view MonoNoteHMM.cpp @ 137:109c3a2ad930 vamp-fft-revision

Make use of new Vamp FFT interface. This reduces the runtime of the regression test from 5.7 to 2.2 seconds on this machine, but it does need the right version of the SDK, which is currently only available in the vampipe branch.
author Chris Cannam
date Fri, 19 Aug 2016 13:26:40 +0100
parents 63c11192f968
children 080fe18f5ebf
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    pYIN - A fundamental frequency estimator for monophonic audio
    Centre for Digital Music, Queen Mary, University of London.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "MonoNoteHMM.h"

#include <boost/math/distributions.hpp>

#include <cstdio>
#include <cmath>

using std::vector;
using std::pair;

MonoNoteHMM::MonoNoteHMM() :
    par()
{
    build();
}

const vector<double>
MonoNoteHMM::calculateObsProb(const vector<pair<double, double> > pitchProb)
{
    // pitchProb is a list of pairs (pitches and their probabilities)
    
    size_t nCandidate = pitchProb.size();
    
    // what is the probability of pitched
    double pIsPitched = 0;
    for (size_t iCandidate = 0; iCandidate < nCandidate; ++iCandidate)
    {
        // pIsPitched = pitchProb[iCandidate].second > pIsPitched ? pitchProb[iCandidate].second : pIsPitched;
        pIsPitched += pitchProb[iCandidate].second;
    }

    // pIsPitched = std::pow(pIsPitched, (1-par.priorWeight)) * std::pow(par.priorPitchedProb, par.priorWeight);
    pIsPitched = pIsPitched * (1-par.priorWeight) + par.priorPitchedProb * par.priorWeight;

    vector<double> out = vector<double>(par.n);
    double tempProbSum = 0;
    for (size_t i = 0; i < par.n; ++i)
    {
        if (i % par.nSPP != 2)
        {
            // std::cerr << getMidiPitch(i) << std::endl;
            double tempProb = 0;
            if (nCandidate > 0)
            {
                double minDist = 10000.0;
                double minDistProb = 0;
                size_t minDistCandidate = 0;
                for (size_t iCandidate = 0; iCandidate < nCandidate; ++iCandidate)
                {
                    double currDist = std::abs(getMidiPitch(i)-pitchProb[iCandidate].first);
                    if (currDist < minDist)
                    {
                        minDist = currDist;
                        minDistProb = pitchProb[iCandidate].second;
                        minDistCandidate = iCandidate;
                    }
                }
                tempProb = std::pow(minDistProb, par.yinTrust) * 
                           boost::math::pdf(pitchDistr[i], 
                                            pitchProb[minDistCandidate].first);
            } else {
                tempProb = 1;
            }
            tempProbSum += tempProb;
            out[i] = tempProb;
        }
    }
    
    for (size_t i = 0; i < par.n; ++i)
    {
        if (i % par.nSPP != 2)
        {
            if (tempProbSum > 0) 
            {
                out[i] = out[i] / tempProbSum * pIsPitched;
            }
        } else {
            out[i] = (1-pIsPitched) / (par.nPPS * par.nS);
        }
    }

    return(out);
}

void
MonoNoteHMM::build()
{
    // the states are organised as follows:
    // 0-2. lowest pitch
    //    0. attack state
    //    1. stable state
    //    2. silent state
    // 3-5. second-lowest pitch
    //    3. attack state
    //    ...
    
    // observation distributions
    for (size_t iState = 0; iState < par.n; ++iState)
    {
        pitchDistr.push_back(boost::math::normal(0,1));
        if (iState % par.nSPP == 2)
        {
            // silent state starts tracking
            init.push_back(1.0/(par.nS * par.nPPS));
        } else {
            init.push_back(0.0);            
        }
    }

    for (size_t iPitch = 0; iPitch < (par.nS * par.nPPS); ++iPitch)
    {
        size_t index = iPitch * par.nSPP;
        double mu = par.minPitch + iPitch * 1.0/par.nPPS;
        pitchDistr[index] = boost::math::normal(mu, par.sigmaYinPitchAttack);
        pitchDistr[index+1] = boost::math::normal(mu, par.sigmaYinPitchStable);
        pitchDistr[index+2] = boost::math::normal(mu, 1.0); // dummy
    }
    
    boost::math::normal noteDistanceDistr(0, par.sigma2Note);

    for (size_t iPitch = 0; iPitch < (par.nS * par.nPPS); ++iPitch)
    {
        // loop through all notes and set sparse transition probabilities
        size_t index = iPitch * par.nSPP;

        // transitions from attack state
        from.push_back(index);
        to.push_back(index);
        transProb.push_back(par.pAttackSelftrans);

        from.push_back(index);
        to.push_back(index+1);
        transProb.push_back(1-par.pAttackSelftrans);

        // transitions from stable state
        from.push_back(index+1);
        to.push_back(index+1); // to itself
        transProb.push_back(par.pStableSelftrans);
        
        from.push_back(index+1);
        to.push_back(index+2); // to silent
        transProb.push_back(par.pStable2Silent);

        // the "easy" transitions from silent state
        from.push_back(index+2);
        to.push_back(index+2);
        transProb.push_back(par.pSilentSelftrans);
        
        
        // the more complicated transitions from the silent
        double probSumSilent = 0;

        vector<double> tempTransProbSilent;
        for (size_t jPitch = 0; jPitch < (par.nS * par.nPPS); ++jPitch)
        {
            int fromPitch = iPitch;
            int toPitch = jPitch;
            double semitoneDistance = 
                std::abs(fromPitch - toPitch) * 1.0 / par.nPPS;
            
            // if (std::fmod(semitoneDistance, 1) == 0 && semitoneDistance > par.minSemitoneDistance)
            if (semitoneDistance == 0 || 
                (semitoneDistance > par.minSemitoneDistance 
                 && semitoneDistance < par.maxJump))
            {
                size_t toIndex = jPitch * par.nSPP; // note attack index

                double tempWeightSilent = boost::math::pdf(noteDistanceDistr, 
                                                           semitoneDistance);
                probSumSilent += tempWeightSilent;

                tempTransProbSilent.push_back(tempWeightSilent);

                from.push_back(index+2);
                to.push_back(toIndex);
            }
        }
        for (size_t i = 0; i < tempTransProbSilent.size(); ++i)
        {
            transProb.push_back((1-par.pSilentSelftrans) * tempTransProbSilent[i]/probSumSilent);
        }
    }
}

double
MonoNoteHMM::getMidiPitch(size_t index)
{
    return pitchDistr[index].mean();
}

double
MonoNoteHMM::getFrequency(size_t index)
{
    return 440 * pow(2, (pitchDistr[index].mean()-69)/12);
}