Mercurial > hg > pyin
view MonoNoteHMM.cpp @ 137:109c3a2ad930 vamp-fft-revision
Make use of new Vamp FFT interface. This reduces the runtime of the regression test from 5.7 to 2.2 seconds on this machine, but it does need the right version of the SDK, which is currently only available in the vampipe branch.
author | Chris Cannam |
---|---|
date | Fri, 19 Aug 2016 13:26:40 +0100 |
parents | 63c11192f968 |
children | 080fe18f5ebf |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* pYIN - A fundamental frequency estimator for monophonic audio Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "MonoNoteHMM.h" #include <boost/math/distributions.hpp> #include <cstdio> #include <cmath> using std::vector; using std::pair; MonoNoteHMM::MonoNoteHMM() : par() { build(); } const vector<double> MonoNoteHMM::calculateObsProb(const vector<pair<double, double> > pitchProb) { // pitchProb is a list of pairs (pitches and their probabilities) size_t nCandidate = pitchProb.size(); // what is the probability of pitched double pIsPitched = 0; for (size_t iCandidate = 0; iCandidate < nCandidate; ++iCandidate) { // pIsPitched = pitchProb[iCandidate].second > pIsPitched ? pitchProb[iCandidate].second : pIsPitched; pIsPitched += pitchProb[iCandidate].second; } // pIsPitched = std::pow(pIsPitched, (1-par.priorWeight)) * std::pow(par.priorPitchedProb, par.priorWeight); pIsPitched = pIsPitched * (1-par.priorWeight) + par.priorPitchedProb * par.priorWeight; vector<double> out = vector<double>(par.n); double tempProbSum = 0; for (size_t i = 0; i < par.n; ++i) { if (i % par.nSPP != 2) { // std::cerr << getMidiPitch(i) << std::endl; double tempProb = 0; if (nCandidate > 0) { double minDist = 10000.0; double minDistProb = 0; size_t minDistCandidate = 0; for (size_t iCandidate = 0; iCandidate < nCandidate; ++iCandidate) { double currDist = std::abs(getMidiPitch(i)-pitchProb[iCandidate].first); if (currDist < minDist) { minDist = currDist; minDistProb = pitchProb[iCandidate].second; minDistCandidate = iCandidate; } } tempProb = std::pow(minDistProb, par.yinTrust) * boost::math::pdf(pitchDistr[i], pitchProb[minDistCandidate].first); } else { tempProb = 1; } tempProbSum += tempProb; out[i] = tempProb; } } for (size_t i = 0; i < par.n; ++i) { if (i % par.nSPP != 2) { if (tempProbSum > 0) { out[i] = out[i] / tempProbSum * pIsPitched; } } else { out[i] = (1-pIsPitched) / (par.nPPS * par.nS); } } return(out); } void MonoNoteHMM::build() { // the states are organised as follows: // 0-2. lowest pitch // 0. attack state // 1. stable state // 2. silent state // 3-5. second-lowest pitch // 3. attack state // ... // observation distributions for (size_t iState = 0; iState < par.n; ++iState) { pitchDistr.push_back(boost::math::normal(0,1)); if (iState % par.nSPP == 2) { // silent state starts tracking init.push_back(1.0/(par.nS * par.nPPS)); } else { init.push_back(0.0); } } for (size_t iPitch = 0; iPitch < (par.nS * par.nPPS); ++iPitch) { size_t index = iPitch * par.nSPP; double mu = par.minPitch + iPitch * 1.0/par.nPPS; pitchDistr[index] = boost::math::normal(mu, par.sigmaYinPitchAttack); pitchDistr[index+1] = boost::math::normal(mu, par.sigmaYinPitchStable); pitchDistr[index+2] = boost::math::normal(mu, 1.0); // dummy } boost::math::normal noteDistanceDistr(0, par.sigma2Note); for (size_t iPitch = 0; iPitch < (par.nS * par.nPPS); ++iPitch) { // loop through all notes and set sparse transition probabilities size_t index = iPitch * par.nSPP; // transitions from attack state from.push_back(index); to.push_back(index); transProb.push_back(par.pAttackSelftrans); from.push_back(index); to.push_back(index+1); transProb.push_back(1-par.pAttackSelftrans); // transitions from stable state from.push_back(index+1); to.push_back(index+1); // to itself transProb.push_back(par.pStableSelftrans); from.push_back(index+1); to.push_back(index+2); // to silent transProb.push_back(par.pStable2Silent); // the "easy" transitions from silent state from.push_back(index+2); to.push_back(index+2); transProb.push_back(par.pSilentSelftrans); // the more complicated transitions from the silent double probSumSilent = 0; vector<double> tempTransProbSilent; for (size_t jPitch = 0; jPitch < (par.nS * par.nPPS); ++jPitch) { int fromPitch = iPitch; int toPitch = jPitch; double semitoneDistance = std::abs(fromPitch - toPitch) * 1.0 / par.nPPS; // if (std::fmod(semitoneDistance, 1) == 0 && semitoneDistance > par.minSemitoneDistance) if (semitoneDistance == 0 || (semitoneDistance > par.minSemitoneDistance && semitoneDistance < par.maxJump)) { size_t toIndex = jPitch * par.nSPP; // note attack index double tempWeightSilent = boost::math::pdf(noteDistanceDistr, semitoneDistance); probSumSilent += tempWeightSilent; tempTransProbSilent.push_back(tempWeightSilent); from.push_back(index+2); to.push_back(toIndex); } } for (size_t i = 0; i < tempTransProbSilent.size(); ++i) { transProb.push_back((1-par.pSilentSelftrans) * tempTransProbSilent[i]/probSumSilent); } } } double MonoNoteHMM::getMidiPitch(size_t index) { return pitchDistr[index].mean(); } double MonoNoteHMM::getFrequency(size_t index) { return 440 * pow(2, (pitchDistr[index].mean()-69)/12); }