annotate LocalCandidatePYIN.cpp @ 126:292b75059949 v1.1

Update versions in n3 file as well
author Chris Cannam
date Tue, 21 Apr 2015 12:54:31 +0100
parents c3a4aa614e33
children 926c292fa3ff 7cbf40306c10
rev   line source
matthiasm@32 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@32 2
matthiasm@32 3 /*
matthiasm@32 4 pYIN - A fundamental frequency estimator for monophonic audio
matthiasm@32 5 Centre for Digital Music, Queen Mary, University of London.
matthiasm@32 6
matthiasm@32 7 This program is free software; you can redistribute it and/or
matthiasm@32 8 modify it under the terms of the GNU General Public License as
matthiasm@32 9 published by the Free Software Foundation; either version 2 of the
matthiasm@32 10 License, or (at your option) any later version. See the file
matthiasm@32 11 COLocalCandidatePYING included with this distribution for more information.
matthiasm@32 12 */
matthiasm@32 13
matthiasm@32 14 #include "LocalCandidatePYIN.h"
matthiasm@32 15 #include "MonoPitch.h"
matthiasm@32 16 #include "YinUtil.h"
matthiasm@32 17
matthiasm@32 18 #include "vamp-sdk/FFT.h"
matthiasm@32 19
matthiasm@32 20 #include <vector>
matthiasm@32 21 #include <algorithm>
matthiasm@32 22
matthiasm@32 23 #include <cstdio>
matthiasm@32 24 #include <sstream>
matthiasm@32 25 // #include <iostream>
matthiasm@32 26 #include <cmath>
matthiasm@32 27 #include <complex>
Chris@39 28 #include <map>
matthiasm@32 29
matthiasm@46 30 #include <boost/math/distributions.hpp>
matthiasm@46 31
matthiasm@32 32 using std::string;
matthiasm@32 33 using std::vector;
Chris@39 34 using std::map;
matthiasm@32 35 using Vamp::RealTime;
matthiasm@32 36
matthiasm@32 37
matthiasm@32 38 LocalCandidatePYIN::LocalCandidatePYIN(float inputSampleRate) :
matthiasm@32 39 Plugin(inputSampleRate),
matthiasm@32 40 m_channels(0),
matthiasm@32 41 m_stepSize(256),
matthiasm@32 42 m_blockSize(2048),
matthiasm@32 43 m_fmin(40),
matthiasm@32 44 m_fmax(700),
matthiasm@32 45 m_oPitchTrackCandidates(0),
matthiasm@32 46 m_threshDistr(2.0f),
matthiasm@32 47 m_outputUnvoiced(0.0f),
matthiasm@70 48 m_preciseTime(0.0f),
matthiasm@32 49 m_pitchProb(0),
matthiasm@32 50 m_timestamp(0),
matthiasm@48 51 m_nCandidate(13)
matthiasm@32 52 {
matthiasm@32 53 }
matthiasm@32 54
matthiasm@32 55 LocalCandidatePYIN::~LocalCandidatePYIN()
matthiasm@32 56 {
matthiasm@32 57 }
matthiasm@32 58
matthiasm@32 59 string
matthiasm@32 60 LocalCandidatePYIN::getIdentifier() const
matthiasm@32 61 {
matthiasm@32 62 return "localcandidatepyin";
matthiasm@32 63 }
matthiasm@32 64
matthiasm@32 65 string
matthiasm@32 66 LocalCandidatePYIN::getName() const
matthiasm@32 67 {
matthiasm@32 68 return "Local Candidate PYIN";
matthiasm@32 69 }
matthiasm@32 70
matthiasm@32 71 string
matthiasm@32 72 LocalCandidatePYIN::getDescription() const
matthiasm@32 73 {
matthiasm@32 74 return "Monophonic pitch and note tracking based on a probabilistic Yin extension.";
matthiasm@32 75 }
matthiasm@32 76
matthiasm@32 77 string
matthiasm@32 78 LocalCandidatePYIN::getMaker() const
matthiasm@32 79 {
matthiasm@32 80 return "Matthias Mauch";
matthiasm@32 81 }
matthiasm@32 82
matthiasm@32 83 int
matthiasm@32 84 LocalCandidatePYIN::getPluginVersion() const
matthiasm@32 85 {
matthiasm@32 86 // Increment this each time you release a version that behaves
matthiasm@32 87 // differently from the previous one
Chris@125 88 return 2;
matthiasm@32 89 }
matthiasm@32 90
matthiasm@32 91 string
matthiasm@32 92 LocalCandidatePYIN::getCopyright() const
matthiasm@32 93 {
matthiasm@32 94 return "GPL";
matthiasm@32 95 }
matthiasm@32 96
matthiasm@32 97 LocalCandidatePYIN::InputDomain
matthiasm@32 98 LocalCandidatePYIN::getInputDomain() const
matthiasm@32 99 {
matthiasm@32 100 return TimeDomain;
matthiasm@32 101 }
matthiasm@32 102
matthiasm@32 103 size_t
matthiasm@32 104 LocalCandidatePYIN::getPreferredBlockSize() const
matthiasm@32 105 {
matthiasm@32 106 return 2048;
matthiasm@32 107 }
matthiasm@32 108
matthiasm@32 109 size_t
matthiasm@32 110 LocalCandidatePYIN::getPreferredStepSize() const
matthiasm@32 111 {
matthiasm@32 112 return 256;
matthiasm@32 113 }
matthiasm@32 114
matthiasm@32 115 size_t
matthiasm@32 116 LocalCandidatePYIN::getMinChannelCount() const
matthiasm@32 117 {
matthiasm@32 118 return 1;
matthiasm@32 119 }
matthiasm@32 120
matthiasm@32 121 size_t
matthiasm@32 122 LocalCandidatePYIN::getMaxChannelCount() const
matthiasm@32 123 {
matthiasm@32 124 return 1;
matthiasm@32 125 }
matthiasm@32 126
matthiasm@32 127 LocalCandidatePYIN::ParameterList
matthiasm@32 128 LocalCandidatePYIN::getParameterDescriptors() const
matthiasm@32 129 {
matthiasm@32 130 ParameterList list;
matthiasm@32 131
matthiasm@32 132 ParameterDescriptor d;
matthiasm@32 133
matthiasm@32 134 d.identifier = "threshdistr";
matthiasm@32 135 d.name = "Yin threshold distribution";
matthiasm@32 136 d.description = ".";
matthiasm@32 137 d.unit = "";
matthiasm@32 138 d.minValue = 0.0f;
matthiasm@32 139 d.maxValue = 7.0f;
matthiasm@32 140 d.defaultValue = 2.0f;
matthiasm@32 141 d.isQuantized = true;
matthiasm@32 142 d.quantizeStep = 1.0f;
matthiasm@32 143 d.valueNames.push_back("Uniform");
matthiasm@32 144 d.valueNames.push_back("Beta (mean 0.10)");
matthiasm@32 145 d.valueNames.push_back("Beta (mean 0.15)");
matthiasm@32 146 d.valueNames.push_back("Beta (mean 0.20)");
matthiasm@32 147 d.valueNames.push_back("Beta (mean 0.30)");
matthiasm@32 148 d.valueNames.push_back("Single Value 0.10");
matthiasm@32 149 d.valueNames.push_back("Single Value 0.15");
matthiasm@32 150 d.valueNames.push_back("Single Value 0.20");
matthiasm@32 151 list.push_back(d);
matthiasm@32 152
matthiasm@32 153 d.identifier = "outputunvoiced";
matthiasm@32 154 d.valueNames.clear();
matthiasm@32 155 d.name = "Output estimates classified as unvoiced?";
matthiasm@32 156 d.description = ".";
matthiasm@32 157 d.unit = "";
matthiasm@32 158 d.minValue = 0.0f;
matthiasm@32 159 d.maxValue = 2.0f;
matthiasm@32 160 d.defaultValue = 0.0f;
matthiasm@32 161 d.isQuantized = true;
matthiasm@32 162 d.quantizeStep = 1.0f;
matthiasm@32 163 d.valueNames.push_back("No");
matthiasm@32 164 d.valueNames.push_back("Yes");
matthiasm@32 165 d.valueNames.push_back("Yes, as negative frequencies");
matthiasm@32 166 list.push_back(d);
matthiasm@32 167
matthiasm@70 168 d.identifier = "precisetime";
matthiasm@70 169 d.valueNames.clear();
matthiasm@70 170 d.name = "Use non-standard precise YIN timing (slow).";
matthiasm@70 171 d.description = ".";
matthiasm@70 172 d.unit = "";
matthiasm@70 173 d.minValue = 0.0f;
matthiasm@70 174 d.maxValue = 1.0f;
matthiasm@70 175 d.defaultValue = 0.0f;
matthiasm@70 176 d.isQuantized = true;
matthiasm@70 177 d.quantizeStep = 1.0f;
matthiasm@70 178 list.push_back(d);
matthiasm@70 179
matthiasm@32 180 return list;
matthiasm@32 181 }
matthiasm@32 182
matthiasm@32 183 float
matthiasm@32 184 LocalCandidatePYIN::getParameter(string identifier) const
matthiasm@32 185 {
matthiasm@32 186 if (identifier == "threshdistr") {
matthiasm@32 187 return m_threshDistr;
matthiasm@32 188 }
matthiasm@32 189 if (identifier == "outputunvoiced") {
matthiasm@32 190 return m_outputUnvoiced;
matthiasm@32 191 }
matthiasm@70 192 if (identifier == "precisetime") {
matthiasm@70 193 return m_preciseTime;
matthiasm@70 194 }
matthiasm@32 195 return 0.f;
matthiasm@32 196 }
matthiasm@32 197
matthiasm@32 198 void
matthiasm@32 199 LocalCandidatePYIN::setParameter(string identifier, float value)
matthiasm@32 200 {
matthiasm@32 201 if (identifier == "threshdistr")
matthiasm@32 202 {
matthiasm@32 203 m_threshDistr = value;
matthiasm@32 204 }
matthiasm@32 205 if (identifier == "outputunvoiced")
matthiasm@32 206 {
matthiasm@32 207 m_outputUnvoiced = value;
matthiasm@32 208 }
matthiasm@70 209 if (identifier == "precisetime")
matthiasm@70 210 {
matthiasm@70 211 m_preciseTime = value;
matthiasm@70 212 }
matthiasm@32 213 }
matthiasm@32 214
matthiasm@32 215 LocalCandidatePYIN::ProgramList
matthiasm@32 216 LocalCandidatePYIN::getPrograms() const
matthiasm@32 217 {
matthiasm@32 218 ProgramList list;
matthiasm@32 219 return list;
matthiasm@32 220 }
matthiasm@32 221
matthiasm@32 222 string
matthiasm@32 223 LocalCandidatePYIN::getCurrentProgram() const
matthiasm@32 224 {
matthiasm@32 225 return ""; // no programs
matthiasm@32 226 }
matthiasm@32 227
matthiasm@32 228 void
matthiasm@32 229 LocalCandidatePYIN::selectProgram(string name)
matthiasm@32 230 {
matthiasm@32 231 }
matthiasm@32 232
matthiasm@32 233 LocalCandidatePYIN::OutputList
matthiasm@32 234 LocalCandidatePYIN::getOutputDescriptors() const
matthiasm@32 235 {
matthiasm@32 236 OutputList outputs;
matthiasm@32 237
matthiasm@32 238 OutputDescriptor d;
matthiasm@32 239
matthiasm@32 240 d.identifier = "pitchtrackcandidates";
matthiasm@32 241 d.name = "Pitch track candidates";
matthiasm@32 242 d.description = "Multiple candidate pitch tracks.";
matthiasm@32 243 d.unit = "Hz";
matthiasm@32 244 d.hasFixedBinCount = false;
matthiasm@32 245 d.hasKnownExtents = true;
matthiasm@32 246 d.minValue = m_fmin;
Chris@39 247 d.maxValue = 500; //!!!???
matthiasm@32 248 d.isQuantized = false;
matthiasm@32 249 d.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@32 250 d.sampleRate = (m_inputSampleRate / m_stepSize);
matthiasm@32 251 d.hasDuration = false;
matthiasm@32 252 outputs.push_back(d);
matthiasm@32 253
matthiasm@32 254 return outputs;
matthiasm@32 255 }
matthiasm@32 256
matthiasm@32 257 bool
matthiasm@32 258 LocalCandidatePYIN::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@32 259 {
matthiasm@32 260 if (channels < getMinChannelCount() ||
matthiasm@32 261 channels > getMaxChannelCount()) return false;
matthiasm@32 262
matthiasm@32 263 /*
matthiasm@32 264 std::cerr << "LocalCandidatePYIN::initialise: channels = " << channels
matthiasm@32 265 << ", stepSize = " << stepSize << ", blockSize = " << blockSize
matthiasm@32 266 << std::endl;
matthiasm@32 267 */
matthiasm@32 268 m_channels = channels;
matthiasm@32 269 m_stepSize = stepSize;
matthiasm@32 270 m_blockSize = blockSize;
matthiasm@32 271
matthiasm@32 272 reset();
matthiasm@32 273
matthiasm@32 274 return true;
matthiasm@32 275 }
matthiasm@32 276
matthiasm@32 277 void
matthiasm@32 278 LocalCandidatePYIN::reset()
matthiasm@32 279 {
matthiasm@32 280 m_pitchProb.clear();
matthiasm@32 281 m_timestamp.clear();
matthiasm@32 282 /*
matthiasm@32 283 std::cerr << "LocalCandidatePYIN::reset"
matthiasm@32 284 << ", blockSize = " << m_blockSize
matthiasm@32 285 << std::endl;
matthiasm@32 286 */
matthiasm@32 287 }
matthiasm@32 288
matthiasm@32 289 LocalCandidatePYIN::FeatureSet
matthiasm@32 290 LocalCandidatePYIN::process(const float *const *inputBuffers, RealTime timestamp)
matthiasm@32 291 {
matthiasm@77 292 int offset = m_preciseTime == 1.0 ? m_blockSize/2 : m_blockSize/4;
matthiasm@77 293 timestamp = timestamp + Vamp::RealTime::frame2RealTime(offset, lrintf(m_inputSampleRate));
matthiasm@32 294
matthiasm@32 295 double *dInputBuffers = new double[m_blockSize];
matthiasm@32 296 for (size_t i = 0; i < m_blockSize; ++i) dInputBuffers[i] = inputBuffers[0][i];
matthiasm@32 297
matthiasm@32 298 size_t yinBufferSize = m_blockSize/2;
matthiasm@32 299 double* yinBuffer = new double[yinBufferSize];
matthiasm@70 300 if (!m_preciseTime) YinUtil::fastDifference(dInputBuffers, yinBuffer, yinBufferSize);
matthiasm@70 301 else YinUtil::slowDifference(dInputBuffers, yinBuffer, yinBufferSize);
matthiasm@32 302
matthiasm@32 303 delete [] dInputBuffers;
matthiasm@32 304
matthiasm@32 305 YinUtil::cumulativeDifference(yinBuffer, yinBufferSize);
matthiasm@32 306
matthiasm@46 307 float minFrequency = 60;
matthiasm@46 308 float maxFrequency = 900;
matthiasm@46 309 vector<double> peakProbability = YinUtil::yinProb(yinBuffer,
matthiasm@46 310 m_threshDistr,
matthiasm@46 311 yinBufferSize,
matthiasm@46 312 m_inputSampleRate/maxFrequency,
matthiasm@46 313 m_inputSampleRate/minFrequency);
matthiasm@46 314
matthiasm@46 315 vector<pair<double, double> > tempPitchProb;
matthiasm@46 316 for (size_t iBuf = 0; iBuf < yinBufferSize; ++iBuf)
matthiasm@32 317 {
matthiasm@46 318 if (peakProbability[iBuf] > 0)
matthiasm@32 319 {
matthiasm@46 320 double currentF0 =
matthiasm@46 321 m_inputSampleRate * (1.0 /
matthiasm@46 322 YinUtil::parabolicInterpolation(yinBuffer, iBuf, yinBufferSize));
matthiasm@46 323 double tempPitch = 12 * std::log(currentF0/440)/std::log(2.) + 69;
matthiasm@46 324 tempPitchProb.push_back(pair<double, double>(tempPitch, peakProbability[iBuf]));
matthiasm@32 325 }
matthiasm@32 326 }
matthiasm@46 327 m_pitchProb.push_back(tempPitchProb);
matthiasm@32 328 m_timestamp.push_back(timestamp);
matthiasm@32 329
matthiasm@76 330 delete[] yinBuffer;
matthiasm@76 331
Chris@39 332 return FeatureSet();
matthiasm@32 333 }
matthiasm@32 334
matthiasm@32 335 LocalCandidatePYIN::FeatureSet
matthiasm@32 336 LocalCandidatePYIN::getRemainingFeatures()
matthiasm@32 337 {
Chris@39 338 // timestamp -> candidate number -> value
Chris@39 339 map<RealTime, map<int, float> > featureValues;
matthiasm@32 340
matthiasm@37 341 // std::cerr << "in remaining features" << std::endl;
matthiasm@32 342
matthiasm@32 343 if (m_pitchProb.empty()) {
Chris@39 344 return FeatureSet();
matthiasm@32 345 }
matthiasm@32 346
matthiasm@32 347 // MONO-PITCH STUFF
matthiasm@32 348 MonoPitch mp;
matthiasm@32 349 size_t nFrame = m_timestamp.size();
matthiasm@32 350 vector<vector<float> > pitchTracks;
matthiasm@32 351 vector<float> freqSum = vector<float>(m_nCandidate);
matthiasm@32 352 vector<float> freqNumber = vector<float>(m_nCandidate);
matthiasm@32 353 vector<float> freqMean = vector<float>(m_nCandidate);
matthiasm@44 354
matthiasm@46 355 boost::math::normal normalDist(0, 8); // semitones sd
matthiasm@46 356 float maxNormalDist = boost::math::pdf(normalDist, 0);
matthiasm@46 357
matthiasm@110 358 // Viterbi-decode multiple times with different frequencies emphasised
matthiasm@32 359 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate)
matthiasm@32 360 {
matthiasm@32 361 pitchTracks.push_back(vector<float>(nFrame));
matthiasm@46 362 vector<vector<pair<double,double> > > tempPitchProb;
matthiasm@46 363 float centrePitch = 45 + 3 * iCandidate;
matthiasm@109 364
matthiasm@46 365 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame) {
matthiasm@60 366 tempPitchProb.push_back(vector<pair<double,double> >());
matthiasm@46 367 float sumProb = 0;
matthiasm@46 368 float pitch = 0;
matthiasm@46 369 float prob = 0;
matthiasm@109 370 for (size_t iProb = 0; iProb < m_pitchProb[iFrame].size(); ++iProb)
matthiasm@109 371 {
matthiasm@109 372 pitch = m_pitchProb[iFrame][iProb].first;
matthiasm@109 373 prob = m_pitchProb[iFrame][iProb].second *
matthiasm@109 374 boost::math::pdf(normalDist, pitch-centrePitch) /
matthiasm@109 375 maxNormalDist * 2;
matthiasm@46 376 sumProb += prob;
matthiasm@109 377 tempPitchProb[iFrame].push_back(
matthiasm@109 378 pair<double,double>(pitch,prob));
matthiasm@46 379 }
matthiasm@109 380 for (size_t iProb = 0; iProb < m_pitchProb[iFrame].size(); ++iProb)
matthiasm@109 381 {
matthiasm@46 382 tempPitchProb[iFrame][iProb].second /= sumProb;
matthiasm@46 383 }
matthiasm@46 384 }
matthiasm@109 385
matthiasm@46 386 vector<float> mpOut = mp.process(tempPitchProb);
matthiasm@44 387 float prevFreq = 0;
matthiasm@32 388 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@32 389 {
matthiasm@32 390 if (mpOut[iFrame] > 0) {
matthiasm@109 391
matthiasm@32 392 pitchTracks[iCandidate][iFrame] = mpOut[iFrame];
matthiasm@32 393 freqSum[iCandidate] += mpOut[iFrame];
matthiasm@32 394 freqNumber[iCandidate]++;
matthiasm@44 395 prevFreq = mpOut[iFrame];
matthiasm@109 396
matthiasm@32 397 }
matthiasm@32 398 }
matthiasm@32 399 freqMean[iCandidate] = freqSum[iCandidate]*1.0/freqNumber[iCandidate];
matthiasm@32 400 }
matthiasm@32 401
matthiasm@37 402 // find near duplicate pitch tracks
matthiasm@34 403 vector<size_t> duplicates;
matthiasm@34 404 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate) {
matthiasm@34 405 for (size_t jCandidate = iCandidate+1; jCandidate < m_nCandidate; ++jCandidate) {
matthiasm@34 406 size_t countEqual = 0;
matthiasm@34 407 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@34 408 {
matthiasm@46 409 if ((pitchTracks[jCandidate][iFrame] == 0 && pitchTracks[iCandidate][iFrame] == 0) ||
matthiasm@46 410 fabs(pitchTracks[iCandidate][iFrame]/pitchTracks[jCandidate][iFrame]-1)<0.01)
matthiasm@34 411 countEqual++;
matthiasm@34 412 }
matthiasm@46 413 // std::cerr << "proportion equal: " << (countEqual * 1.0 / nFrame) << std::endl;
matthiasm@34 414 if (countEqual * 1.0 / nFrame > 0.8) {
matthiasm@34 415 if (freqNumber[iCandidate] > freqNumber[jCandidate]) {
matthiasm@34 416 duplicates.push_back(jCandidate);
matthiasm@46 417 } else if (iCandidate < jCandidate) {
matthiasm@34 418 duplicates.push_back(iCandidate);
matthiasm@34 419 }
matthiasm@34 420 }
matthiasm@34 421 }
matthiasm@34 422 }
matthiasm@34 423
matthiasm@37 424 // now find non-duplicate pitch tracks
Chris@39 425 map<int, int> candidateActuals;
Chris@39 426 map<int, std::string> candidateLabels;
Chris@39 427
matthiasm@46 428 vector<vector<float> > outputFrequencies;
matthiasm@60 429 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame) outputFrequencies.push_back(vector<float>());
matthiasm@46 430
matthiasm@32 431 int actualCandidateNumber = 0;
matthiasm@110 432 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate)
matthiasm@110 433 {
matthiasm@34 434 bool isDuplicate = false;
matthiasm@34 435 for (size_t i = 0; i < duplicates.size(); ++i) {
matthiasm@110 436
matthiasm@34 437 if (duplicates[i] == iCandidate) {
matthiasm@34 438 isDuplicate = true;
matthiasm@34 439 break;
matthiasm@34 440 }
matthiasm@34 441 }
matthiasm@46 442 if (!isDuplicate && freqNumber[iCandidate] > 0.5*nFrame)
matthiasm@32 443 {
matthiasm@32 444 std::ostringstream convert;
matthiasm@32 445 convert << actualCandidateNumber++;
Chris@39 446 candidateLabels[iCandidate] = convert.str();
Chris@39 447 candidateActuals[iCandidate] = actualCandidateNumber;
matthiasm@46 448 // std::cerr << iCandidate << " " << actualCandidateNumber << " " << freqNumber[iCandidate] << " " << freqMean[iCandidate] << std::endl;
matthiasm@32 449 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@32 450 {
matthiasm@32 451 if (pitchTracks[iCandidate][iFrame] > 0)
matthiasm@32 452 {
matthiasm@46 453 // featureValues[m_timestamp[iFrame]][iCandidate] =
matthiasm@46 454 // pitchTracks[iCandidate][iFrame];
matthiasm@46 455 outputFrequencies[iFrame].push_back(pitchTracks[iCandidate][iFrame]);
matthiasm@60 456 } else {
matthiasm@60 457 outputFrequencies[iFrame].push_back(0);
matthiasm@32 458 }
matthiasm@32 459 }
matthiasm@32 460 }
matthiasm@43 461 // fs[m_oPitchTrackCandidates].push_back(f);
matthiasm@32 462 }
matthiasm@32 463
Chris@39 464 // adapt our features so as to return a stack of candidate values
Chris@39 465 // per frame
Chris@39 466
Chris@39 467 FeatureSet fs;
Chris@39 468
matthiasm@46 469 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame){
Chris@39 470 Feature f;
Chris@39 471 f.hasTimestamp = true;
matthiasm@46 472 f.timestamp = m_timestamp[iFrame];
matthiasm@46 473 f.values = outputFrequencies[iFrame];
Chris@39 474 fs[0].push_back(f);
Chris@39 475 }
matthiasm@46 476
matthiasm@46 477 // I stopped using Chris's map stuff below because I couldn't get my head around it
matthiasm@46 478 //
matthiasm@46 479 // for (map<RealTime, map<int, float> >::const_iterator i =
matthiasm@46 480 // featureValues.begin(); i != featureValues.end(); ++i) {
matthiasm@46 481 // Feature f;
matthiasm@46 482 // f.hasTimestamp = true;
matthiasm@46 483 // f.timestamp = i->first;
matthiasm@46 484 // int nextCandidate = candidateActuals.begin()->second;
matthiasm@46 485 // for (map<int, float>::const_iterator j =
matthiasm@46 486 // i->second.begin(); j != i->second.end(); ++j) {
matthiasm@46 487 // while (candidateActuals[j->first] > nextCandidate) {
matthiasm@46 488 // f.values.push_back(0);
matthiasm@46 489 // ++nextCandidate;
matthiasm@46 490 // }
matthiasm@46 491 // f.values.push_back(j->second);
matthiasm@46 492 // nextCandidate = j->first + 1;
matthiasm@46 493 // }
matthiasm@46 494 // //!!! can't use labels?
matthiasm@46 495 // fs[0].push_back(f);
matthiasm@46 496 // }
matthiasm@32 497
matthiasm@32 498 return fs;
matthiasm@32 499 }