annotate LocalCandidatePYIN.cpp @ 64:e291f3657872 tony tony_v0.5

Didn't intend to commit the build in debug mode
author Chris Cannam
date Wed, 02 Apr 2014 10:37:49 +0100
parents 60eb8771d340
children 01057d57dd9a
rev   line source
matthiasm@32 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@32 2
matthiasm@32 3 /*
matthiasm@32 4 pYIN - A fundamental frequency estimator for monophonic audio
matthiasm@32 5 Centre for Digital Music, Queen Mary, University of London.
matthiasm@32 6
matthiasm@32 7 This program is free software; you can redistribute it and/or
matthiasm@32 8 modify it under the terms of the GNU General Public License as
matthiasm@32 9 published by the Free Software Foundation; either version 2 of the
matthiasm@32 10 License, or (at your option) any later version. See the file
matthiasm@32 11 COLocalCandidatePYING included with this distribution for more information.
matthiasm@32 12 */
matthiasm@32 13
matthiasm@32 14 #include "LocalCandidatePYIN.h"
matthiasm@32 15 #include "MonoPitch.h"
matthiasm@32 16 #include "YinUtil.h"
matthiasm@32 17
matthiasm@32 18 #include "vamp-sdk/FFT.h"
matthiasm@32 19
matthiasm@32 20 #include <vector>
matthiasm@32 21 #include <algorithm>
matthiasm@32 22
matthiasm@32 23 #include <cstdio>
matthiasm@32 24 #include <sstream>
matthiasm@32 25 // #include <iostream>
matthiasm@32 26 #include <cmath>
matthiasm@32 27 #include <complex>
Chris@39 28 #include <map>
matthiasm@32 29
matthiasm@46 30 #include <boost/math/distributions.hpp>
matthiasm@46 31
matthiasm@32 32 using std::string;
matthiasm@32 33 using std::vector;
Chris@39 34 using std::map;
matthiasm@32 35 using Vamp::RealTime;
matthiasm@32 36
matthiasm@32 37
matthiasm@32 38 LocalCandidatePYIN::LocalCandidatePYIN(float inputSampleRate) :
matthiasm@32 39 Plugin(inputSampleRate),
matthiasm@32 40 m_channels(0),
matthiasm@32 41 m_stepSize(256),
matthiasm@32 42 m_blockSize(2048),
matthiasm@32 43 m_fmin(40),
matthiasm@32 44 m_fmax(700),
matthiasm@32 45 m_yin(2048, inputSampleRate, 0.0),
matthiasm@32 46 m_oPitchTrackCandidates(0),
matthiasm@32 47 m_threshDistr(2.0f),
matthiasm@32 48 m_outputUnvoiced(0.0f),
matthiasm@32 49 m_pitchProb(0),
matthiasm@32 50 m_timestamp(0),
matthiasm@48 51 m_nCandidate(13)
matthiasm@32 52 {
matthiasm@32 53 }
matthiasm@32 54
matthiasm@32 55 LocalCandidatePYIN::~LocalCandidatePYIN()
matthiasm@32 56 {
matthiasm@32 57 }
matthiasm@32 58
matthiasm@32 59 string
matthiasm@32 60 LocalCandidatePYIN::getIdentifier() const
matthiasm@32 61 {
matthiasm@32 62 return "localcandidatepyin";
matthiasm@32 63 }
matthiasm@32 64
matthiasm@32 65 string
matthiasm@32 66 LocalCandidatePYIN::getName() const
matthiasm@32 67 {
matthiasm@32 68 return "Local Candidate PYIN";
matthiasm@32 69 }
matthiasm@32 70
matthiasm@32 71 string
matthiasm@32 72 LocalCandidatePYIN::getDescription() const
matthiasm@32 73 {
matthiasm@32 74 return "Monophonic pitch and note tracking based on a probabilistic Yin extension.";
matthiasm@32 75 }
matthiasm@32 76
matthiasm@32 77 string
matthiasm@32 78 LocalCandidatePYIN::getMaker() const
matthiasm@32 79 {
matthiasm@32 80 return "Matthias Mauch";
matthiasm@32 81 }
matthiasm@32 82
matthiasm@32 83 int
matthiasm@32 84 LocalCandidatePYIN::getPluginVersion() const
matthiasm@32 85 {
matthiasm@32 86 // Increment this each time you release a version that behaves
matthiasm@32 87 // differently from the previous one
matthiasm@32 88 return 1;
matthiasm@32 89 }
matthiasm@32 90
matthiasm@32 91 string
matthiasm@32 92 LocalCandidatePYIN::getCopyright() const
matthiasm@32 93 {
matthiasm@32 94 return "GPL";
matthiasm@32 95 }
matthiasm@32 96
matthiasm@32 97 LocalCandidatePYIN::InputDomain
matthiasm@32 98 LocalCandidatePYIN::getInputDomain() const
matthiasm@32 99 {
matthiasm@32 100 return TimeDomain;
matthiasm@32 101 }
matthiasm@32 102
matthiasm@32 103 size_t
matthiasm@32 104 LocalCandidatePYIN::getPreferredBlockSize() const
matthiasm@32 105 {
matthiasm@32 106 return 2048;
matthiasm@32 107 }
matthiasm@32 108
matthiasm@32 109 size_t
matthiasm@32 110 LocalCandidatePYIN::getPreferredStepSize() const
matthiasm@32 111 {
matthiasm@32 112 return 256;
matthiasm@32 113 }
matthiasm@32 114
matthiasm@32 115 size_t
matthiasm@32 116 LocalCandidatePYIN::getMinChannelCount() const
matthiasm@32 117 {
matthiasm@32 118 return 1;
matthiasm@32 119 }
matthiasm@32 120
matthiasm@32 121 size_t
matthiasm@32 122 LocalCandidatePYIN::getMaxChannelCount() const
matthiasm@32 123 {
matthiasm@32 124 return 1;
matthiasm@32 125 }
matthiasm@32 126
matthiasm@32 127 LocalCandidatePYIN::ParameterList
matthiasm@32 128 LocalCandidatePYIN::getParameterDescriptors() const
matthiasm@32 129 {
matthiasm@32 130 ParameterList list;
matthiasm@32 131
matthiasm@32 132 ParameterDescriptor d;
matthiasm@32 133
matthiasm@32 134 d.identifier = "threshdistr";
matthiasm@32 135 d.name = "Yin threshold distribution";
matthiasm@32 136 d.description = ".";
matthiasm@32 137 d.unit = "";
matthiasm@32 138 d.minValue = 0.0f;
matthiasm@32 139 d.maxValue = 7.0f;
matthiasm@32 140 d.defaultValue = 2.0f;
matthiasm@32 141 d.isQuantized = true;
matthiasm@32 142 d.quantizeStep = 1.0f;
matthiasm@32 143 d.valueNames.push_back("Uniform");
matthiasm@32 144 d.valueNames.push_back("Beta (mean 0.10)");
matthiasm@32 145 d.valueNames.push_back("Beta (mean 0.15)");
matthiasm@32 146 d.valueNames.push_back("Beta (mean 0.20)");
matthiasm@32 147 d.valueNames.push_back("Beta (mean 0.30)");
matthiasm@32 148 d.valueNames.push_back("Single Value 0.10");
matthiasm@32 149 d.valueNames.push_back("Single Value 0.15");
matthiasm@32 150 d.valueNames.push_back("Single Value 0.20");
matthiasm@32 151 list.push_back(d);
matthiasm@32 152
matthiasm@32 153 d.identifier = "outputunvoiced";
matthiasm@32 154 d.valueNames.clear();
matthiasm@32 155 d.name = "Output estimates classified as unvoiced?";
matthiasm@32 156 d.description = ".";
matthiasm@32 157 d.unit = "";
matthiasm@32 158 d.minValue = 0.0f;
matthiasm@32 159 d.maxValue = 2.0f;
matthiasm@32 160 d.defaultValue = 0.0f;
matthiasm@32 161 d.isQuantized = true;
matthiasm@32 162 d.quantizeStep = 1.0f;
matthiasm@32 163 d.valueNames.push_back("No");
matthiasm@32 164 d.valueNames.push_back("Yes");
matthiasm@32 165 d.valueNames.push_back("Yes, as negative frequencies");
matthiasm@32 166 list.push_back(d);
matthiasm@32 167
matthiasm@32 168 return list;
matthiasm@32 169 }
matthiasm@32 170
matthiasm@32 171 float
matthiasm@32 172 LocalCandidatePYIN::getParameter(string identifier) const
matthiasm@32 173 {
matthiasm@32 174 if (identifier == "threshdistr") {
matthiasm@32 175 return m_threshDistr;
matthiasm@32 176 }
matthiasm@32 177 if (identifier == "outputunvoiced") {
matthiasm@32 178 return m_outputUnvoiced;
matthiasm@32 179 }
matthiasm@32 180 return 0.f;
matthiasm@32 181 }
matthiasm@32 182
matthiasm@32 183 void
matthiasm@32 184 LocalCandidatePYIN::setParameter(string identifier, float value)
matthiasm@32 185 {
matthiasm@32 186 if (identifier == "threshdistr")
matthiasm@32 187 {
matthiasm@32 188 m_threshDistr = value;
matthiasm@32 189 }
matthiasm@32 190 if (identifier == "outputunvoiced")
matthiasm@32 191 {
matthiasm@32 192 m_outputUnvoiced = value;
matthiasm@32 193 }
matthiasm@32 194
matthiasm@32 195 }
matthiasm@32 196
matthiasm@32 197 LocalCandidatePYIN::ProgramList
matthiasm@32 198 LocalCandidatePYIN::getPrograms() const
matthiasm@32 199 {
matthiasm@32 200 ProgramList list;
matthiasm@32 201 return list;
matthiasm@32 202 }
matthiasm@32 203
matthiasm@32 204 string
matthiasm@32 205 LocalCandidatePYIN::getCurrentProgram() const
matthiasm@32 206 {
matthiasm@32 207 return ""; // no programs
matthiasm@32 208 }
matthiasm@32 209
matthiasm@32 210 void
matthiasm@32 211 LocalCandidatePYIN::selectProgram(string name)
matthiasm@32 212 {
matthiasm@32 213 }
matthiasm@32 214
matthiasm@32 215 LocalCandidatePYIN::OutputList
matthiasm@32 216 LocalCandidatePYIN::getOutputDescriptors() const
matthiasm@32 217 {
matthiasm@32 218 OutputList outputs;
matthiasm@32 219
matthiasm@32 220 OutputDescriptor d;
matthiasm@32 221
matthiasm@32 222 int outputNumber = 0;
matthiasm@32 223
matthiasm@32 224 d.identifier = "pitchtrackcandidates";
matthiasm@32 225 d.name = "Pitch track candidates";
matthiasm@32 226 d.description = "Multiple candidate pitch tracks.";
matthiasm@32 227 d.unit = "Hz";
matthiasm@32 228 d.hasFixedBinCount = false;
matthiasm@32 229 d.hasKnownExtents = true;
matthiasm@32 230 d.minValue = m_fmin;
Chris@39 231 d.maxValue = 500; //!!!???
matthiasm@32 232 d.isQuantized = false;
matthiasm@32 233 d.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@32 234 d.sampleRate = (m_inputSampleRate / m_stepSize);
matthiasm@32 235 d.hasDuration = false;
matthiasm@32 236 outputs.push_back(d);
matthiasm@32 237
matthiasm@32 238 return outputs;
matthiasm@32 239 }
matthiasm@32 240
matthiasm@32 241 bool
matthiasm@32 242 LocalCandidatePYIN::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@32 243 {
matthiasm@32 244 if (channels < getMinChannelCount() ||
matthiasm@32 245 channels > getMaxChannelCount()) return false;
matthiasm@32 246
matthiasm@32 247 /*
matthiasm@32 248 std::cerr << "LocalCandidatePYIN::initialise: channels = " << channels
matthiasm@32 249 << ", stepSize = " << stepSize << ", blockSize = " << blockSize
matthiasm@32 250 << std::endl;
matthiasm@32 251 */
matthiasm@32 252 m_channels = channels;
matthiasm@32 253 m_stepSize = stepSize;
matthiasm@32 254 m_blockSize = blockSize;
matthiasm@32 255
matthiasm@32 256 reset();
matthiasm@32 257
matthiasm@32 258 return true;
matthiasm@32 259 }
matthiasm@32 260
matthiasm@32 261 void
matthiasm@32 262 LocalCandidatePYIN::reset()
matthiasm@32 263 {
matthiasm@32 264 m_yin.setThresholdDistr(m_threshDistr);
matthiasm@32 265 m_yin.setFrameSize(m_blockSize);
matthiasm@32 266
matthiasm@32 267 m_pitchProb.clear();
matthiasm@32 268 m_timestamp.clear();
matthiasm@32 269 /*
matthiasm@32 270 std::cerr << "LocalCandidatePYIN::reset"
matthiasm@32 271 << ", blockSize = " << m_blockSize
matthiasm@32 272 << std::endl;
matthiasm@32 273 */
matthiasm@32 274 }
matthiasm@32 275
matthiasm@32 276 LocalCandidatePYIN::FeatureSet
matthiasm@32 277 LocalCandidatePYIN::process(const float *const *inputBuffers, RealTime timestamp)
matthiasm@32 278 {
matthiasm@60 279 timestamp = timestamp + Vamp::RealTime::frame2RealTime(m_blockSize/2, lrintf(m_inputSampleRate));
matthiasm@32 280
matthiasm@32 281 double *dInputBuffers = new double[m_blockSize];
matthiasm@32 282 for (size_t i = 0; i < m_blockSize; ++i) dInputBuffers[i] = inputBuffers[0][i];
matthiasm@32 283
matthiasm@32 284 size_t yinBufferSize = m_blockSize/2;
matthiasm@32 285 double* yinBuffer = new double[yinBufferSize];
matthiasm@60 286 YinUtil::slowDifference(dInputBuffers, yinBuffer, yinBufferSize);
matthiasm@32 287
matthiasm@32 288 delete [] dInputBuffers;
matthiasm@32 289
matthiasm@32 290 YinUtil::cumulativeDifference(yinBuffer, yinBufferSize);
matthiasm@32 291
matthiasm@46 292 float minFrequency = 60;
matthiasm@46 293 float maxFrequency = 900;
matthiasm@46 294 vector<double> peakProbability = YinUtil::yinProb(yinBuffer,
matthiasm@46 295 m_threshDistr,
matthiasm@46 296 yinBufferSize,
matthiasm@46 297 m_inputSampleRate/maxFrequency,
matthiasm@46 298 m_inputSampleRate/minFrequency);
matthiasm@46 299
matthiasm@46 300 vector<pair<double, double> > tempPitchProb;
matthiasm@46 301 for (size_t iBuf = 0; iBuf < yinBufferSize; ++iBuf)
matthiasm@32 302 {
matthiasm@46 303 if (peakProbability[iBuf] > 0)
matthiasm@32 304 {
matthiasm@46 305 double currentF0 =
matthiasm@46 306 m_inputSampleRate * (1.0 /
matthiasm@46 307 YinUtil::parabolicInterpolation(yinBuffer, iBuf, yinBufferSize));
matthiasm@46 308 double tempPitch = 12 * std::log(currentF0/440)/std::log(2.) + 69;
matthiasm@46 309 if (tempPitch != tempPitch) std::cerr << "AAAAAAAAA! " << currentF0 << " " << (m_inputSampleRate * 1.0 / iBuf) << std::endl;
matthiasm@46 310 tempPitchProb.push_back(pair<double, double>(tempPitch, peakProbability[iBuf]));
matthiasm@32 311 }
matthiasm@32 312 }
matthiasm@46 313 m_pitchProb.push_back(tempPitchProb);
matthiasm@32 314 m_timestamp.push_back(timestamp);
matthiasm@32 315
Chris@39 316 return FeatureSet();
matthiasm@32 317 }
matthiasm@32 318
matthiasm@32 319 LocalCandidatePYIN::FeatureSet
matthiasm@32 320 LocalCandidatePYIN::getRemainingFeatures()
matthiasm@32 321 {
Chris@39 322 // timestamp -> candidate number -> value
Chris@39 323 map<RealTime, map<int, float> > featureValues;
matthiasm@32 324
matthiasm@37 325 // std::cerr << "in remaining features" << std::endl;
matthiasm@32 326
matthiasm@32 327 if (m_pitchProb.empty()) {
Chris@39 328 return FeatureSet();
matthiasm@32 329 }
matthiasm@32 330
matthiasm@32 331 // MONO-PITCH STUFF
matthiasm@32 332 MonoPitch mp;
matthiasm@32 333 size_t nFrame = m_timestamp.size();
matthiasm@32 334 vector<vector<float> > pitchTracks;
matthiasm@32 335 vector<float> freqSum = vector<float>(m_nCandidate);
matthiasm@32 336 vector<float> freqNumber = vector<float>(m_nCandidate);
matthiasm@32 337 vector<float> freqMean = vector<float>(m_nCandidate);
matthiasm@44 338
matthiasm@46 339 boost::math::normal normalDist(0, 8); // semitones sd
matthiasm@46 340 float maxNormalDist = boost::math::pdf(normalDist, 0);
matthiasm@46 341
matthiasm@32 342 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate)
matthiasm@32 343 {
matthiasm@32 344 pitchTracks.push_back(vector<float>(nFrame));
matthiasm@46 345 vector<vector<pair<double,double> > > tempPitchProb;
matthiasm@46 346 float centrePitch = 45 + 3 * iCandidate;
matthiasm@46 347 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame) {
matthiasm@60 348 tempPitchProb.push_back(vector<pair<double,double> >());
matthiasm@46 349 float sumProb = 0;
matthiasm@46 350 float pitch = 0;
matthiasm@46 351 float prob = 0;
matthiasm@46 352 for (size_t iProb = 0; iProb < m_pitchProb[iFrame].size(); ++iProb) {
matthiasm@46 353 pitch = m_pitchProb[iFrame][iProb].first;
matthiasm@46 354 // std::cerr << pitch << " " << m_pitchProb[iFrame][iProb].second << std::endl;
matthiasm@48 355 prob = m_pitchProb[iFrame][iProb].second * boost::math::pdf(normalDist, pitch-centrePitch) / maxNormalDist * 2;
matthiasm@46 356 sumProb += prob;
matthiasm@46 357 tempPitchProb[iFrame].push_back(pair<double,double>(pitch,prob));
matthiasm@46 358 // std::cerr << m_timestamp[iFrame] << " " << iCandidate << " " << centrePitch << " " << pitch << " " << prob << std::endl;
matthiasm@46 359 }
matthiasm@46 360 for (size_t iProb = 0; iProb < m_pitchProb[iFrame].size(); ++iProb) {
matthiasm@46 361 tempPitchProb[iFrame][iProb].second /= sumProb;
matthiasm@46 362 }
matthiasm@46 363 }
matthiasm@46 364 vector<float> mpOut = mp.process(tempPitchProb);
matthiasm@44 365 float prevFreq = 0;
matthiasm@32 366 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@32 367 {
matthiasm@32 368 if (mpOut[iFrame] > 0) {
matthiasm@46 369 // if (prevFreq>0 && fabs(log2(mpOut[iFrame]/prevFreq)) > 0.1) {
matthiasm@46 370 // for (int jFrame = iFrame; jFrame != -1; --jFrame) {
matthiasm@46 371 // // hack: setting all freqs to 0 -- will be eliminated later
matthiasm@46 372 // pitchTracks[iCandidate][jFrame] = 0;
matthiasm@46 373 // }
matthiasm@46 374 // break;
matthiasm@46 375 // }
matthiasm@32 376 pitchTracks[iCandidate][iFrame] = mpOut[iFrame];
matthiasm@32 377 freqSum[iCandidate] += mpOut[iFrame];
matthiasm@32 378 freqNumber[iCandidate]++;
matthiasm@44 379 prevFreq = mpOut[iFrame];
matthiasm@32 380 }
matthiasm@32 381 }
matthiasm@32 382 freqMean[iCandidate] = freqSum[iCandidate]*1.0/freqNumber[iCandidate];
matthiasm@32 383 }
matthiasm@32 384
matthiasm@37 385 // find near duplicate pitch tracks
matthiasm@34 386 vector<size_t> duplicates;
matthiasm@34 387 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate) {
matthiasm@34 388 for (size_t jCandidate = iCandidate+1; jCandidate < m_nCandidate; ++jCandidate) {
matthiasm@34 389 size_t countEqual = 0;
matthiasm@34 390 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@34 391 {
matthiasm@46 392 if ((pitchTracks[jCandidate][iFrame] == 0 && pitchTracks[iCandidate][iFrame] == 0) ||
matthiasm@46 393 fabs(pitchTracks[iCandidate][iFrame]/pitchTracks[jCandidate][iFrame]-1)<0.01)
matthiasm@34 394 countEqual++;
matthiasm@34 395 }
matthiasm@46 396 // std::cerr << "proportion equal: " << (countEqual * 1.0 / nFrame) << std::endl;
matthiasm@34 397 if (countEqual * 1.0 / nFrame > 0.8) {
matthiasm@34 398 if (freqNumber[iCandidate] > freqNumber[jCandidate]) {
matthiasm@34 399 duplicates.push_back(jCandidate);
matthiasm@46 400 } else if (iCandidate < jCandidate) {
matthiasm@34 401 duplicates.push_back(iCandidate);
matthiasm@34 402 }
matthiasm@34 403 }
matthiasm@34 404 }
matthiasm@34 405 }
matthiasm@34 406
matthiasm@37 407 // now find non-duplicate pitch tracks
Chris@39 408 map<int, int> candidateActuals;
Chris@39 409 map<int, std::string> candidateLabels;
Chris@39 410
matthiasm@46 411 vector<vector<float> > outputFrequencies;
matthiasm@60 412 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame) outputFrequencies.push_back(vector<float>());
matthiasm@46 413
matthiasm@32 414 int actualCandidateNumber = 0;
matthiasm@32 415 for (size_t iCandidate = 0; iCandidate < m_nCandidate; ++iCandidate) {
matthiasm@34 416 bool isDuplicate = false;
matthiasm@34 417 for (size_t i = 0; i < duplicates.size(); ++i) {
matthiasm@37 418 // std::cerr << duplicates[i] << std::endl;
matthiasm@34 419 if (duplicates[i] == iCandidate) {
matthiasm@34 420 isDuplicate = true;
matthiasm@34 421 break;
matthiasm@34 422 }
matthiasm@34 423 }
matthiasm@46 424 if (!isDuplicate && freqNumber[iCandidate] > 0.5*nFrame)
matthiasm@32 425 {
matthiasm@32 426 std::ostringstream convert;
matthiasm@32 427 convert << actualCandidateNumber++;
Chris@39 428 candidateLabels[iCandidate] = convert.str();
Chris@39 429 candidateActuals[iCandidate] = actualCandidateNumber;
matthiasm@46 430 // std::cerr << iCandidate << " " << actualCandidateNumber << " " << freqNumber[iCandidate] << " " << freqMean[iCandidate] << std::endl;
matthiasm@32 431 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame)
matthiasm@32 432 {
matthiasm@32 433 if (pitchTracks[iCandidate][iFrame] > 0)
matthiasm@32 434 {
matthiasm@46 435 // featureValues[m_timestamp[iFrame]][iCandidate] =
matthiasm@46 436 // pitchTracks[iCandidate][iFrame];
matthiasm@46 437 outputFrequencies[iFrame].push_back(pitchTracks[iCandidate][iFrame]);
matthiasm@60 438 } else {
matthiasm@60 439 outputFrequencies[iFrame].push_back(0);
matthiasm@32 440 }
matthiasm@32 441 }
matthiasm@32 442 }
matthiasm@43 443 // fs[m_oPitchTrackCandidates].push_back(f);
matthiasm@32 444 }
matthiasm@32 445
Chris@39 446 // adapt our features so as to return a stack of candidate values
Chris@39 447 // per frame
Chris@39 448
Chris@39 449 FeatureSet fs;
Chris@39 450
matthiasm@46 451 for (size_t iFrame = 0; iFrame < nFrame; ++iFrame){
Chris@39 452 Feature f;
Chris@39 453 f.hasTimestamp = true;
matthiasm@46 454 f.timestamp = m_timestamp[iFrame];
matthiasm@46 455 f.values = outputFrequencies[iFrame];
Chris@39 456 fs[0].push_back(f);
Chris@39 457 }
matthiasm@46 458
matthiasm@46 459 // I stopped using Chris's map stuff below because I couldn't get my head around it
matthiasm@46 460 //
matthiasm@46 461 // for (map<RealTime, map<int, float> >::const_iterator i =
matthiasm@46 462 // featureValues.begin(); i != featureValues.end(); ++i) {
matthiasm@46 463 // Feature f;
matthiasm@46 464 // f.hasTimestamp = true;
matthiasm@46 465 // f.timestamp = i->first;
matthiasm@46 466 // int nextCandidate = candidateActuals.begin()->second;
matthiasm@46 467 // for (map<int, float>::const_iterator j =
matthiasm@46 468 // i->second.begin(); j != i->second.end(); ++j) {
matthiasm@46 469 // while (candidateActuals[j->first] > nextCandidate) {
matthiasm@46 470 // f.values.push_back(0);
matthiasm@46 471 // ++nextCandidate;
matthiasm@46 472 // }
matthiasm@46 473 // f.values.push_back(j->second);
matthiasm@46 474 // nextCandidate = j->first + 1;
matthiasm@46 475 // }
matthiasm@46 476 // //!!! can't use labels?
matthiasm@46 477 // fs[0].push_back(f);
matthiasm@46 478 // }
matthiasm@32 479
matthiasm@32 480 return fs;
matthiasm@32 481 }