Mercurial > hg > pycsalgos
changeset 25:dd0e78b5bb13
Added .squeeze() in GAP function to avoid strange error in numpy.delete(), which wasn't raised on my laptop but was raised on octave
author | nikcleju |
---|---|
date | Wed, 09 Nov 2011 00:55:45 +0000 |
parents | c07440417bd8 |
children | f0f77d92e0c1 |
files | pyCSalgos/GAP/GAP.py scripts/ABSapprox.py |
diffstat | 2 files changed, 10 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/pyCSalgos/GAP/GAP.py Wed Nov 09 00:15:57 2011 +0000 +++ b/pyCSalgos/GAP/GAP.py Wed Nov 09 00:55:45 2011 +0000 @@ -412,7 +412,8 @@ xinit = xhat.copy() #Lambdahat[to_be_removed] = [] - Lambdahat = np.delete(Lambdahat, to_be_removed) + # TODO: find what why squeeze() is needed here!! + Lambdahat = np.delete(Lambdahat.squeeze(),to_be_removed) #n = sqrt(d); #figure(9);
--- a/scripts/ABSapprox.py Wed Nov 09 00:15:57 2011 +0000 +++ b/scripts/ABSapprox.py Wed Nov 09 00:55:45 2011 +0000 @@ -8,8 +8,8 @@ import numpy as np import scipy.io import math -import matplotlib.pyplot as plt -import matplotlib.cm as cm +#import matplotlib.pyplot as plt +#import matplotlib.cm as cm import pyCSalgos import pyCSalgos.GAP.GAP import pyCSalgos.SL0.SL0_approx @@ -55,21 +55,22 @@ nalgosL = len(algosL) #Set up experiment parameters - d = 50; + d = 50.0; sigma = 2.0 deltas = np.arange(0.05,0.95,0.05) rhos = np.arange(0.05,0.95,0.05) - #deltas = np.array([0.05,0.95]) - #rhos = np.array([0.05,0.95]) + #deltas = np.array([0.15,0.95]) + #rhos = np.array([0.15,0.95]) #deltas = np.array([0.05]) #rhos = np.array([0.05]) #delta = 0.8; #rho = 0.15; - numvects = 100; # Number of vectors to generate + numvects = 20; # Number of vectors to generate SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy # Values for lambda #lambdas = [0 10.^linspace(-5, 4, 10)]; - lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) + #lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) + lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000]) meanmatrix = dict() for i,algo in zip(np.arange(nalgosN),algosN):