# HG changeset patch # User nikcleju # Date 1322486993 0 # Node ID a916c38cfe8a47ec811a16e633848ff0019280da # Parent 9bea0b50b17088d5b0559f6228c7f949db2d97c9 Added standard params std3 and std4, which are identical to std1 and std2, but with 10dB SNR diff -r 9bea0b50b170 -r a916c38cfe8a scripts/ABSapprox.py --- a/scripts/ABSapprox.py Mon Nov 21 15:35:02 2011 +0000 +++ b/scripts/ABSapprox.py Mon Nov 28 13:29:53 2011 +0000 @@ -230,6 +230,67 @@ return algosN,algosL,d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,\ doshowplot,dosaveplot,saveplotbase,saveplotexts + + # Standard parameters 3 +# All algorithms, 100 vectors +# d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 +# Do save data, do save plots, don't show plots +# IDENTICAL with 1 but with 10dB SNR noise +def std3(): + # Define which algorithms to run + algosN = gap,sl0analysis,bpanalysis # tuple of algorithms not depending on lambda + algosL = sl0,bp,ompeps,tst # tuple of algorithms depending on lambda (our ABS approach) + + d = 50.0; + sigma = 2.0 + deltas = np.arange(0.05,1.,0.05) + rhos = np.arange(0.05,1.,0.05) + numvects = 100; # Number of vectors to generate + SNRdb = 10.; # This is norm(signal)/norm(noise), so power, not energy + # Values for lambda + #lambdas = [0 10.^linspace(-5, 4, 10)]; + lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000]) + + dosavedata = True + savedataname = 'approx_pt_std1.mat' + doshowplot = False + dosaveplot = True + saveplotbase = 'approx_pt_std1_' + saveplotexts = ('png','pdf','eps') + + return algosN,algosL,d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,\ + doshowplot,dosaveplot,saveplotbase,saveplotexts + +# Standard parameters 4 +# All algorithms, 100 vectors +# d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 +# Do save data, do save plots, don't show plots +# Identical to 2 but with 10dB SNR noise +def std4(): + # Define which algorithms to run + algosN = gap,sl0analysis,bpanalysis # tuple of algorithms not depending on lambda + algosL = sl0,bp,ompeps,tst # tuple of algorithms depending on lambda (our ABS approach) + + d = 20.0 + sigma = 10.0 + deltas = np.arange(0.05,1.,0.05) + rhos = np.arange(0.05,1.,0.05) + numvects = 100; # Number of vectors to generate + SNRdb = 10.; # This is norm(signal)/norm(noise), so power, not energy + # Values for lambda + #lambdas = [0 10.^linspace(-5, 4, 10)]; + lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000]) + + dosavedata = True + savedataname = 'approx_pt_std2.mat' + doshowplot = False + dosaveplot = True + saveplotbase = 'approx_pt_std2_' + saveplotexts = ('png','pdf','eps') + + return algosN,algosL,d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,\ + doshowplot,dosaveplot,saveplotbase,saveplotexts + #========================== # Interface run functions #==========================