nikcleju@10: # -*- coding: utf-8 -*- nikcleju@10: """ nikcleju@10: Created on Sat Nov 05 18:08:40 2011 nikcleju@10: nikcleju@10: @author: Nic nikcleju@10: """ nikcleju@10: nikcleju@19: import numpy as np nikcleju@22: import scipy.io nikcleju@22: import math nikcleju@29: nikcleju@10: import pyCSalgos nikcleju@19: import pyCSalgos.GAP.GAP nikcleju@19: import pyCSalgos.SL0.SL0_approx nikcleju@10: nikcleju@29: #========================== nikcleju@29: # Algorithm functions nikcleju@29: #========================== nikcleju@22: def run_gap(y,M,Omega,epsilon): nikcleju@19: gapparams = {"num_iteration" : 1000,\ nikcleju@19: "greedy_level" : 0.9,\ nikcleju@19: "stopping_coefficient_size" : 1e-4,\ nikcleju@19: "l2solver" : 'pseudoinverse',\ nikcleju@19: "noise_level": epsilon} nikcleju@22: return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,np.zeros(Omega.shape[1]))[0] nikcleju@29: nikcleju@22: def run_sl0(y,M,Omega,D,U,S,Vt,epsilon,lbd): nikcleju@19: nikcleju@19: N,n = Omega.shape nikcleju@22: #D = np.linalg.pinv(Omega) nikcleju@22: #U,S,Vt = np.linalg.svd(D) nikcleju@19: aggDupper = np.dot(M,D) nikcleju@19: aggDlower = Vt[-(N-n):,:] nikcleju@19: aggD = np.concatenate((aggDupper, lbd * aggDlower)) nikcleju@19: aggy = np.concatenate((y, np.zeros(N-n))) nikcleju@19: nikcleju@22: sigmamin = 0.001 nikcleju@22: sigma_decrease_factor = 0.5 nikcleju@20: mu_0 = 2 nikcleju@20: L = 10 nikcleju@22: return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L) nikcleju@10: nikcleju@27: def run_bp(y,M,Omega,D,U,S,Vt,epsilon,lbd): nikcleju@27: nikcleju@27: N,n = Omega.shape nikcleju@27: #D = np.linalg.pinv(Omega) nikcleju@27: #U,S,Vt = np.linalg.svd(D) nikcleju@27: aggDupper = np.dot(M,D) nikcleju@27: aggDlower = Vt[-(N-n):,:] nikcleju@27: aggD = np.concatenate((aggDupper, lbd * aggDlower)) nikcleju@27: aggy = np.concatenate((y, np.zeros(N-n))) nikcleju@27: nikcleju@27: sigmamin = 0.001 nikcleju@27: sigma_decrease_factor = 0.5 nikcleju@27: mu_0 = 2 nikcleju@27: L = 10 nikcleju@27: return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L) nikcleju@27: nikcleju@29: #========================== nikcleju@29: # Define tuples (algorithm function, name) nikcleju@29: #========================== nikcleju@22: gap = (run_gap, 'GAP') nikcleju@22: sl0 = (run_sl0, 'SL0_approx') nikcleju@29: bp = (run_bp, 'BP') nikcleju@10: nikcleju@22: # Define which algorithms to run nikcleju@22: # 1. Algorithms not depending on lambda nikcleju@22: algosN = gap, # tuple nikcleju@22: # 2. Algorithms depending on lambda (our ABS approach) nikcleju@22: algosL = sl0, # tuple nikcleju@29: nikcleju@29: #========================== nikcleju@29: # Interface functions nikcleju@29: #========================== nikcleju@29: def run_multiproc(ncpus=None): nikcleju@29: d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname = standard_params() nikcleju@29: run_multi(algosN, algosL, d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata=dosavedata,savedataname=savedataname,\ nikcleju@29: doparallel=True, ncpus=ncpus) nikcleju@22: nikcleju@29: def run(): nikcleju@29: d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname = standard_params() nikcleju@29: run_multi(algosN, algosL, d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata=dosavedata,savedataname=savedataname,\ nikcleju@29: doparallel=False) nikcleju@19: nikcleju@29: def standard_params(): nikcleju@29: #Set up standard experiment parameters nikcleju@25: d = 50.0; nikcleju@22: sigma = 2.0 nikcleju@27: #deltas = np.arange(0.05,1.,0.05) nikcleju@27: #rhos = np.arange(0.05,1.,0.05) nikcleju@27: deltas = np.array([0.05, 0.45, 0.95]) nikcleju@27: rhos = np.array([0.05, 0.45, 0.95]) nikcleju@22: #deltas = np.array([0.05]) nikcleju@22: #rhos = np.array([0.05]) nikcleju@22: #delta = 0.8; nikcleju@22: #rho = 0.15; nikcleju@27: numvects = 100; # Number of vectors to generate nikcleju@20: SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy nikcleju@22: # Values for lambda nikcleju@22: #lambdas = [0 10.^linspace(-5, 4, 10)]; nikcleju@25: #lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) nikcleju@25: lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000]) nikcleju@29: nikcleju@29: dosavedata = True nikcleju@29: savedataname = 'ABSapprox.mat' nikcleju@29: nikcleju@29: nikcleju@29: return d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname nikcleju@29: nikcleju@29: #========================== nikcleju@29: # Main functions nikcleju@29: #========================== nikcleju@29: def run_multi(algosN, algosL, d, sigma, deltas, rhos, lambdas, numvects, SNRdb, nikcleju@29: doparallel=False, ncpus=None,\ nikcleju@29: doshowplot=False, dosaveplot=False, saveplotbase=None, saveplotexts=None,\ nikcleju@29: dosavedata=False, savedataname=None): nikcleju@29: nikcleju@29: if doparallel: nikcleju@29: from multiprocessing import Pool nikcleju@29: nikcleju@29: # TODO: load different engine for matplotlib that allows saving without showing nikcleju@29: try: nikcleju@29: import matplotlib.pyplot as plt nikcleju@29: except: nikcleju@29: dosaveplot = False nikcleju@29: doshowplot = False nikcleju@29: if dosaveplot and doshowplot: nikcleju@29: import matplotlib.cm as cm nikcleju@29: nikcleju@29: nalgosN = len(algosN) nikcleju@29: nalgosL = len(algosL) nikcleju@29: nikcleju@22: meanmatrix = dict() nikcleju@22: for i,algo in zip(np.arange(nalgosN),algosN): nikcleju@22: meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size)) nikcleju@22: for i,algo in zip(np.arange(nalgosL),algosL): nikcleju@22: meanmatrix[algo[1]] = np.zeros((lambdas.size, rhos.size, deltas.size)) nikcleju@22: nikcleju@29: # Prepare parameters nikcleju@29: jobparams = [] nikcleju@22: for idelta,delta in zip(np.arange(deltas.size),deltas): nikcleju@22: for irho,rho in zip(np.arange(rhos.size),rhos): nikcleju@22: nikcleju@22: # Generate data and operator nikcleju@29: Omega,x0,y,M,realnoise = generateData(d,sigma,delta,rho,numvects,SNRdb) nikcleju@22: nikcleju@29: #Save the parameters, and run after nikcleju@24: print "***** delta = ",delta," rho = ",rho nikcleju@29: jobparams.append((algosN,algosL, Omega,y,lambdas,realnoise,M,x0)) nikcleju@29: nikcleju@29: # Run nikcleju@29: jobresults = [] nikcleju@29: if doparallel: nikcleju@29: pool = Pool(4) nikcleju@29: jobresults = pool.map(run_once_tuple,jobparams) nikcleju@29: else: nikcleju@29: for jobparam in jobparams: nikcleju@29: jobresults.append(run_once(algosN,algosL,Omega,y,lambdas,realnoise,M,x0)) nikcleju@29: nikcleju@29: # Read results nikcleju@29: idx = 0 nikcleju@29: for idelta,delta in zip(np.arange(deltas.size),deltas): nikcleju@29: for irho,rho in zip(np.arange(rhos.size),rhos): nikcleju@29: mrelerrN,mrelerrL = jobresults[idx] nikcleju@29: idx = idx+1 nikcleju@22: for algotuple in algosN: nikcleju@22: meanmatrix[algotuple[1]][irho,idelta] = 1 - mrelerrN[algotuple[1]] nikcleju@22: if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]): nikcleju@22: meanmatrix[algotuple[1]][irho,idelta] = 0 nikcleju@22: for algotuple in algosL: nikcleju@22: for ilbd in np.arange(lambdas.size): nikcleju@22: meanmatrix[algotuple[1]][ilbd,irho,idelta] = 1 - mrelerrL[algotuple[1]][ilbd] nikcleju@22: if meanmatrix[algotuple[1]][ilbd,irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][ilbd,irho,idelta]): nikcleju@22: meanmatrix[algotuple[1]][ilbd,irho,idelta] = 0 nikcleju@22: nikcleju@22: # # Prepare matrices to show nikcleju@22: # showmats = dict() nikcleju@22: # for i,algo in zip(np.arange(nalgosN),algosN): nikcleju@22: # showmats[algo[1]] = np.zeros(rhos.size, deltas.size) nikcleju@22: # for i,algo in zip(np.arange(nalgosL),algosL): nikcleju@22: # showmats[algo[1]] = np.zeros(lambdas.size, rhos.size, deltas.size) nikcleju@22: nikcleju@22: # Save nikcleju@29: if dosavedata: nikcleju@29: tosave = dict() nikcleju@29: tosave['meanmatrix'] = meanmatrix nikcleju@29: tosave['d'] = d nikcleju@29: tosave['sigma'] = sigma nikcleju@29: tosave['deltas'] = deltas nikcleju@29: tosave['rhos'] = rhos nikcleju@29: tosave['numvects'] = numvects nikcleju@29: tosave['SNRdb'] = SNRdb nikcleju@29: tosave['lambdas'] = lambdas nikcleju@29: try: nikcleju@29: scipy.io.savemat(savedataname, tosave) nikcleju@29: except: nikcleju@29: print "Save error" nikcleju@22: # Show nikcleju@29: if doshowplot or dosaveplot: nikcleju@27: for algotuple in algosN: nikcleju@29: algoname = algotuple[1] nikcleju@27: plt.figure() nikcleju@29: plt.imshow(meanmatrix[algoname], cmap=cm.gray, interpolation='nearest',origin='lower') nikcleju@29: if dosaveplot: nikcleju@29: for ext in saveplotexts: nikcleju@29: plt.savefig(saveplotbase + algoname + '.' + ext) nikcleju@27: for algotuple in algosL: nikcleju@29: algoname = algotuple[1] nikcleju@27: for ilbd in np.arange(lambdas.size): nikcleju@27: plt.figure() nikcleju@29: plt.imshow(meanmatrix[algoname][ilbd], cmap=cm.gray, interpolation='nearest',origin='lower') nikcleju@29: if dosaveplot: nikcleju@29: for ext in saveplotexts: nikcleju@29: plt.savefig(saveplotbase + algoname + lambdas[ilbd] + '.' + ext) nikcleju@29: if doshowplot: nikcleju@29: plt.show() nikcleju@29: nikcleju@22: print "Finished." nikcleju@22: nikcleju@29: def run_once_tuple(t): nikcleju@29: return run_once(*t) nikcleju@10: nikcleju@29: def run_once(algosN,algosL,Omega,y,lambdas,realnoise,M,x0): nikcleju@22: nikcleju@22: d = Omega.shape[1] nikcleju@22: nikcleju@22: nalgosN = len(algosN) nikcleju@22: nalgosL = len(algosL) nikcleju@10: nikcleju@19: xrec = dict() nikcleju@19: err = dict() nikcleju@19: relerr = dict() nikcleju@22: nikcleju@22: # Prepare storage variables for algorithms non-Lambda nikcleju@22: for i,algo in zip(np.arange(nalgosN),algosN): nikcleju@22: xrec[algo[1]] = np.zeros((d, y.shape[1])) nikcleju@22: err[algo[1]] = np.zeros(y.shape[1]) nikcleju@22: relerr[algo[1]] = np.zeros(y.shape[1]) nikcleju@22: # Prepare storage variables for algorithms with Lambda nikcleju@22: for i,algo in zip(np.arange(nalgosL),algosL): nikcleju@22: xrec[algo[1]] = np.zeros((lambdas.size, d, y.shape[1])) nikcleju@22: err[algo[1]] = np.zeros((lambdas.size, y.shape[1])) nikcleju@22: relerr[algo[1]] = np.zeros((lambdas.size, y.shape[1])) nikcleju@19: nikcleju@22: # Run algorithms non-Lambda nikcleju@22: for iy in np.arange(y.shape[1]): nikcleju@22: for algofunc,strname in algosN: nikcleju@22: epsilon = 1.1 * np.linalg.norm(realnoise[:,iy]) nikcleju@22: xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega,epsilon) nikcleju@22: err[strname][iy] = np.linalg.norm(x0[:,iy] - xrec[strname][:,iy]) nikcleju@22: relerr[strname][iy] = err[strname][iy] / np.linalg.norm(x0[:,iy]) nikcleju@22: for algotuple in algosN: nikcleju@22: print algotuple[1],' : avg relative error = ',np.mean(relerr[strname]) nikcleju@22: nikcleju@22: # Run algorithms with Lambda nikcleju@19: for ilbd,lbd in zip(np.arange(lambdas.size),lambdas): nikcleju@19: for iy in np.arange(y.shape[1]): nikcleju@22: D = np.linalg.pinv(Omega) nikcleju@22: U,S,Vt = np.linalg.svd(D) nikcleju@22: for algofunc,strname in algosL: nikcleju@19: epsilon = 1.1 * np.linalg.norm(realnoise[:,iy]) nikcleju@22: gamma = algofunc(y[:,iy],M,Omega,D,U,S,Vt,epsilon,lbd) nikcleju@22: xrec[strname][ilbd,:,iy] = np.dot(D,gamma) nikcleju@19: err[strname][ilbd,iy] = np.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy]) nikcleju@19: relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / np.linalg.norm(x0[:,iy]) nikcleju@19: print 'Lambda = ',lbd,' :' nikcleju@22: for algotuple in algosL: nikcleju@22: print ' ',algotuple[1],' : avg relative error = ',np.mean(relerr[strname][ilbd,:]) nikcleju@10: nikcleju@22: # Prepare results nikcleju@22: mrelerrN = dict() nikcleju@22: for algotuple in algosN: nikcleju@22: mrelerrN[algotuple[1]] = np.mean(relerr[algotuple[1]]) nikcleju@22: mrelerrL = dict() nikcleju@22: for algotuple in algosL: nikcleju@22: mrelerrL[algotuple[1]] = np.mean(relerr[algotuple[1]],1) nikcleju@22: nikcleju@22: return mrelerrN,mrelerrL nikcleju@29: nikcleju@29: def generateData(d,sigma,delta,rho,numvects,SNRdb): nikcleju@29: nikcleju@29: # Process parameters nikcleju@29: noiselevel = 1.0 / (10.0**(SNRdb/10.0)); nikcleju@29: p = round(sigma*d); nikcleju@29: m = round(delta*d); nikcleju@29: l = round(d - rho*m); nikcleju@29: nikcleju@29: # Generate Omega and data based on parameters nikcleju@29: Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p); nikcleju@29: # Optionally make Omega more coherent nikcleju@29: U,S,Vt = np.linalg.svd(Omega); nikcleju@29: Sdnew = S * (1+np.arange(S.size)) # Make D coherent, not Omega! nikcleju@29: Snew = np.vstack((np.diag(Sdnew), np.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1])))) nikcleju@29: Omega = np.dot(U , np.dot(Snew,Vt)) nikcleju@29: nikcleju@29: # Generate data nikcleju@29: x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0'); nikcleju@29: nikcleju@29: return Omega,x0,y,M,realnoise nikcleju@22: nikcleju@19: # Script main nikcleju@19: if __name__ == "__main__": nikcleju@27: #import cProfile nikcleju@27: #cProfile.run('mainrun()', 'profile') nikcleju@29: run()