Mercurial > hg > pycsalgos
view scripts/ABSapproxPP.py @ 51:eb4c66488ddf
Split algos.py and stdparams.py, added nesta to std1, 2, 3, 4
author | nikcleju |
---|---|
date | Wed, 07 Dec 2011 12:44:19 +0000 |
parents | 1a88766113a9 |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Sat Nov 05 18:08:40 2011 @author: Nic """ import numpy import scipy.io import math #import matplotlib.pyplot as plt #import matplotlib.cm as cm import pp import pyCSalgos import pyCSalgos.GAP.GAP import pyCSalgos.SL0.SL0_approx # Define functions that prepare arguments for each algorithm call def run_gap(y,M,Omega,epsilon): gapparams = {"num_iteration" : 1000,\ "greedy_level" : 0.9,\ "stopping_coefficient_size" : 1e-4,\ "l2solver" : 'pseudoinverse',\ "noise_level": epsilon} return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,numpy.zeros(Omega.shape[1]))[0] def run_sl0(y,M,Omega,D,U,S,Vt,epsilon,lbd): N,n = Omega.shape #D = numpy.linalg.pinv(Omega) #U,S,Vt = numpy.linalg.svd(D) aggDupper = numpy.dot(M,D) aggDlower = Vt[-(N-n):,:] aggD = numpy.concatenate((aggDupper, lbd * aggDlower)) aggy = numpy.concatenate((y, numpy.zeros(N-n))) sigmamin = 0.001 sigma_decrease_factor = 0.5 mu_0 = 2 L = 10 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L) # Define tuples (algorithm setup function, algorithm function, name) gap = (run_gap, 'GAP') sl0 = (run_sl0, 'SL0_approx') # Define which algorithms to run # 1. Algorithms not depending on lambda algosN = gap, # tuple # 2. Algorithms depending on lambda (our ABS approach) algosL = sl0, # tuple def mainrun(): nalgosN = len(algosN) nalgosL = len(algosL) #Set up experiment parameters d = 50; sigma = 2.0 #deltas = numpy.arange(0.05,0.95,0.05) #rhos = numpy.arange(0.05,0.95,0.05) deltas = numpy.array([0.05, 0.45, 0.95]) rhos = numpy.array([0.05, 0.45, 0.95]) #deltas = numpy.array([0.05]) #rhos = numpy.array([0.05]) #delta = 0.8; #rho = 0.15; numvects = 10; # Number of vectors to generate SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy # Values for lambda #lambdas = [0 10.^linspace(-5, 4, 10)]; lambdas = numpy.concatenate((numpy.array([0]), 10**numpy.linspace(-5, 4, 10))) meanmatrix = dict() for i,algo in zip(numpy.arange(nalgosN),algosN): meanmatrix[algo[1]] = numpy.zeros((rhos.size, deltas.size)) for i,algo in zip(numpy.arange(nalgosL),algosL): meanmatrix[algo[1]] = numpy.zeros((lambdas.size, rhos.size, deltas.size)) # PP: start job server job_server = pp.Server(ncpus = 4) idx = 0 jobparams = [] for idelta,delta in zip(numpy.arange(deltas.size),deltas): for irho,rho in zip(numpy.arange(rhos.size),rhos): # Generate data and operator Omega,x0,y,M,realnoise = genData(d,sigma,delta,rho,numvects,SNRdb) jobparams.append((algosN,algosL, Omega,y,lambdas,realnoise,M,x0)) idx = idx + 1 # Run algorithms modules = ('numpy','pyCSalgos','pyCSalgos.GAP.GAP','pyCSalgos.SL0.SL0_approx') depfuncs = () jobs = [job_server.submit(runonce, jobparam, (run_gap,run_sl0), modules, depfuncs) for jobparam in jobparams] #funcarray[idelta,irho] = job_server.submit(runonce,(algosN,algosL, Omega,y,lambdas,realnoise,M,x0), (run_gap,run_sl0)) #mrelerrN,mrelerrL = runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0) # Get data from jobs idx = 0 for idelta,delta in zip(numpy.arange(deltas.size),deltas): for irho,rho in zip(numpy.arange(rhos.size),rhos): print "***** delta = ",delta," rho = ",rho mrelerrN,mrelerrL = jobs[idx]() for algotuple in algosN: meanmatrix[algotuple[1]][irho,idelta] = 1 - mrelerrN[algotuple[1]] if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]): meanmatrix[algotuple[1]][irho,idelta] = 0 for algotuple in algosL: for ilbd in numpy.arange(lambdas.size): meanmatrix[algotuple[1]][ilbd,irho,idelta] = 1 - mrelerrL[algotuple[1]][ilbd] if meanmatrix[algotuple[1]][ilbd,irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][ilbd,irho,idelta]): meanmatrix[algotuple[1]][ilbd,irho,idelta] = 0 idx = idx + 1 # # Prepare matrices to show # showmats = dict() # for i,algo in zip(numpy.arange(nalgosN),algosN): # showmats[algo[1]] = numpy.zeros(rhos.size, deltas.size) # for i,algo in zip(numpy.arange(nalgosL),algosL): # showmats[algo[1]] = numpy.zeros(lambdas.size, rhos.size, deltas.size) # Save tosave = dict() tosave['meanmatrix'] = meanmatrix tosave['d'] = d tosave['sigma'] = sigma tosave['deltas'] = deltas tosave['rhos'] = rhos tosave['numvects'] = numvects tosave['SNRdb'] = SNRdb tosave['lambdas'] = lambdas try: scipy.io.savemat('ABSapprox.mat',tosave) except TypeError: print "Oops, Type Error" raise # Show # for algotuple in algosN: # plt.figure() # plt.imshow(meanmatrix[algotuple[1]], cmap=cm.gray, interpolation='nearest') # for algotuple in algosL: # for ilbd in numpy.arange(lambdas.size): # plt.figure() # plt.imshow(meanmatrix[algotuple[1]][ilbd], cmap=cm.gray, interpolation='nearest') # plt.show() print "Finished." def genData(d,sigma,delta,rho,numvects,SNRdb): # Process parameters noiselevel = 1.0 / (10.0**(SNRdb/10.0)); p = round(sigma*d); m = round(delta*d); l = round(d - rho*m); # Generate Omega and data based on parameters Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p); # Optionally make Omega more coherent U,S,Vt = numpy.linalg.svd(Omega); Sdnew = S * (1+numpy.arange(S.size)) # Make D coherent, not Omega! Snew = numpy.vstack((numpy.diag(Sdnew), numpy.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1])))) Omega = numpy.dot(U , numpy.dot(Snew,Vt)) # Generate data x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0'); return Omega,x0,y,M,realnoise def runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0): d = Omega.shape[1] nalgosN = len(algosN) nalgosL = len(algosL) xrec = dict() err = dict() relerr = dict() # Prepare storage variables for algorithms non-Lambda for i,algo in zip(numpy.arange(nalgosN),algosN): xrec[algo[1]] = numpy.zeros((d, y.shape[1])) err[algo[1]] = numpy.zeros(y.shape[1]) relerr[algo[1]] = numpy.zeros(y.shape[1]) # Prepare storage variables for algorithms with Lambda for i,algo in zip(numpy.arange(nalgosL),algosL): xrec[algo[1]] = numpy.zeros((lambdas.size, d, y.shape[1])) err[algo[1]] = numpy.zeros((lambdas.size, y.shape[1])) relerr[algo[1]] = numpy.zeros((lambdas.size, y.shape[1])) # Run algorithms non-Lambda for iy in numpy.arange(y.shape[1]): for algofunc,strname in algosN: epsilon = 1.1 * numpy.linalg.norm(realnoise[:,iy]) xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega,epsilon) err[strname][iy] = numpy.linalg.norm(x0[:,iy] - xrec[strname][:,iy]) relerr[strname][iy] = err[strname][iy] / numpy.linalg.norm(x0[:,iy]) for algotuple in algosN: print algotuple[1],' : avg relative error = ',numpy.mean(relerr[strname]) # Run algorithms with Lambda for ilbd,lbd in zip(numpy.arange(lambdas.size),lambdas): for iy in numpy.arange(y.shape[1]): D = numpy.linalg.pinv(Omega) U,S,Vt = numpy.linalg.svd(D) for algofunc,strname in algosL: epsilon = 1.1 * numpy.linalg.norm(realnoise[:,iy]) gamma = algofunc(y[:,iy],M,Omega,D,U,S,Vt,epsilon,lbd) xrec[strname][ilbd,:,iy] = numpy.dot(D,gamma) err[strname][ilbd,iy] = numpy.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy]) relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / numpy.linalg.norm(x0[:,iy]) print 'Lambda = ',lbd,' :' for algotuple in algosL: print ' ',algotuple[1],' : avg relative error = ',numpy.mean(relerr[strname][ilbd,:]) # Prepare results mrelerrN = dict() for algotuple in algosN: mrelerrN[algotuple[1]] = numpy.mean(relerr[algotuple[1]]) mrelerrL = dict() for algotuple in algosL: mrelerrL[algotuple[1]] = numpy.mean(relerr[algotuple[1]],1) return mrelerrN,mrelerrL # Script main if __name__ == "__main__": mainrun()