Mercurial > hg > pycsalgos
view pyCSalgos/GAP/GAP.py @ 51:eb4c66488ddf
Split algos.py and stdparams.py, added nesta to std1, 2, 3, 4
author | nikcleju |
---|---|
date | Wed, 07 Dec 2011 12:44:19 +0000 |
parents | 4f3bc35195ce |
children | 768b57e446ab |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Thu Oct 13 14:05:22 2011 @author: ncleju """ #from numpy import * #from scipy import * import numpy import numpy.linalg import scipy as sp #import scipy.stats #from scipy import stats #import scipy.linalg #from scipy import lnalg import math from numpy.random import RandomState rng = RandomState() def Generate_Analysis_Operator(d, p): # generate random tight frame with equal column norms if p == d: T = rng.randn(d,d); [Omega, discard] = numpy.qr(T); else: Omega = rng.randn(p, d); T = numpy.zeros((p, d)); tol = 1e-8; max_j = 200; j = 1; while (sum(sum(abs(T-Omega))) > numpy.dot(tol,numpy.dot(p,d)) and j < max_j): j = j + 1; T = Omega; [U, S, Vh] = numpy.linalg.svd(Omega); V = Vh.T #Omega = U * [eye(d); zeros(p-d,d)] * V'; Omega2 = numpy.dot(numpy.dot(U, numpy.concatenate((numpy.eye(d), numpy.zeros((p-d,d))))), V.transpose()) #Omega = diag(1./sqrt(diag(Omega*Omega')))*Omega; Omega = numpy.dot(numpy.diag(1.0 / numpy.sqrt(numpy.diag(numpy.dot(Omega2,Omega2.transpose())))), Omega2) #end ##disp(j); #end return Omega def Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr): #function [x0,y,M,LambdaMat] = Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr) # Building an analysis problem, which includes the ingredients: # - Omega - the analysis operator of size p*d # - M is anunderdetermined measurement matrix of size m*d (m<d) # - x0 is a vector of length d that satisfies ||Omega*x0||=p-k # - Lambda is the true location of these k zeros in Omega*x0 # - a measurement vector y0=Mx0 is computed # - noise contaminated measurement vector y is obtained by # y = y0 + n where n is an additive gaussian noise with norm(n,2)/norm(y0,2) = noiselevel # Added by Nic: # - Omega = analysis operator # - normstr: if 'l0', generate l0 sparse vector (unchanged). If 'l1', # generate a vector of Laplacian random variables (gamma) and # pseudoinvert to find x # Omega is known as input parameter #Omega=Generate_Analysis_Operator(d, p); # Omega = randn(p,d); # for i = 1:size(Omega,1) # Omega(i,:) = Omega(i,:) / norm(Omega(i,:)); # end #Init LambdaMat = numpy.zeros((k,numvectors)) x0 = numpy.zeros((d,numvectors)) y = numpy.zeros((m,numvectors)) realnoise = numpy.zeros((m,numvectors)) M = rng.randn(m,d); #for i=1:numvectors for i in range(0,numvectors): # Generate signals #if strcmp(normstr,'l0') if normstr == 'l0': # Unchanged #Lambda=randperm(p); Lambda = rng.permutation(int(p)); Lambda = numpy.sort(Lambda[0:k]); LambdaMat[:,i] = Lambda; # store for output # The signal is drawn at random from the null-space defined by the rows # of the matreix Omega(Lambda,:) [U,D,Vh] = numpy.linalg.svd(Omega[Lambda,:]); V = Vh.T NullSpace = V[:,k:]; #print numpy.dot(NullSpace, rng.randn(d-k,1)).shape #print x0[:,i].shape x0[:,i] = numpy.squeeze(numpy.dot(NullSpace, rng.randn(d-k,1))); # Nic: add orthogonality noise # orthonoiseSNRdb = 6; # n = randn(p,1); # #x0(:,i) = x0(:,i) + n / norm(n)^2 * norm(x0(:,i))^2 / 10^(orthonoiseSNRdb/10); # n = n / norm(n)^2 * norm(Omega * x0(:,i))^2 / 10^(orthonoiseSNRdb/10); # x0(:,i) = pinv(Omega) * (Omega * x0(:,i) + n); #elseif strcmp(normstr, 'l1') elif normstr == 'l1': print('Nic says: not implemented yet') raise Exception('Nic says: not implemented yet') #gamma = laprnd(p,1,0,1); #x0(:,i) = Omega \ gamma; else: #error('normstr must be l0 or l1!'); print('Nic says: not implemented yet') raise Exception('Nic says: not implemented yet') #end # Acquire measurements y[:,i] = numpy.dot(M, x0[:,i]) # Add noise t_norm = numpy.linalg.norm(y[:,i],2) n = numpy.squeeze(rng.randn(m, 1)) # In case n i just a number, nuit an array, norm() fails if n.ndim == 0: nnorm = abs(n) else: nnorm = numpy.linalg.norm(n, 2); y[:,i] = y[:,i] + noiselevel * t_norm * n / nnorm realnoise[:,i] = noiselevel * t_norm * n / nnorm #end return x0,y,M,LambdaMat,realnoise ##################### #function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params) def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params): # # This function aims to compute # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon. # arepr is the analysis representation corresponding to Lambdahat, i.e., # arepr = Omega(Lambdahat, :) * xhat. # The function also returns the lagrange multiplier in the process used to compute xhat. # # Inputs: # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise. # M : Measurement matrix # MH : M', the conjugate transpose of M # Omega : analysis operator # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator. # Lambdahat : an index set indicating some rows of Omega. # xinit : initial estimate that will be used for the conjugate gradient algorithm. # ilagmult : initial lagrange multiplier to be used in # params : parameters # params.noise_level : this corresponds to epsilon above. # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method. # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used. # #d = length(xinit) d = xinit.size lagmultmax = 1e5; lagmultmin = 1e-4; lagmultfactor = 2.0; accuracy_adjustment_exponent = 4/5.; lagmult = max(min(ilagmult, lagmultmax), lagmultmin); was_infeasible = 0; was_feasible = 0; ####################################################################### ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.) ####################################################################### #if strcmp(params.l2solver, 'pseudoinverse') if params['l2solver'] == 'pseudoinverse': #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double') if M.dtype == 'float64' and Omega.dtype == 'double': while True: alpha = math.sqrt(lagmult); xhat = numpy.linalg.lstsq(numpy.concatenate((M, alpha*Omega[Lambdahat,:])), numpy.concatenate((y, numpy.zeros(Lambdahat.size))))[0] temp = numpy.linalg.norm(y - numpy.dot(M,xhat), 2); #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]); if temp <= params['noise_level']: was_feasible = True; if was_infeasible: break; else: lagmult = lagmult*lagmultfactor; elif temp > params['noise_level']: was_infeasible = True; if was_feasible: xhat = xprev.copy(); break; lagmult = lagmult/lagmultfactor; if lagmult < lagmultmin or lagmult > lagmultmax: break; xprev = xhat.copy(); arepr = numpy.dot(Omega[Lambdahat, :], xhat); return xhat,arepr,lagmult; ######################################################################## ## Computation using conjugate gradient method. ######################################################################## #if strcmp(class(MH),'function_handle') if hasattr(MH, '__call__'): b = MH(y); else: b = numpy.dot(MH, y); norm_b = numpy.linalg.norm(b, 2); xhat = xinit.copy(); xprev = xinit.copy(); residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; direction = -residual; iter = 0; while iter < params.max_inner_iteration: iter = iter + 1; alpha = numpy.linalg.norm(residual,2)**2 / numpy.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult)); xhat = xhat + alpha*direction; prev_residual = residual.copy(); residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; beta = numpy.linalg.norm(residual,2)**2 / numpy.linalg.norm(prev_residual,2)**2; direction = -residual + beta*direction; if numpy.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']: #if strcmp(class(M), 'function_handle') if hasattr(M, '__call__'): temp = numpy.linalg.norm(y-M(xhat), 2); else: temp = numpy.linalg.norm(y-numpy.dot(M,xhat), 2); #if strcmp(class(Omega), 'function_handle') if hasattr(Omega, '__call__'): u = Omega(xhat); u = math.sqrt(lagmult)*numpy.linalg.norm(u(Lambdahat), 2); else: u = math.sqrt(lagmult)*numpy.linalg.norm(Omega[Lambdahat,:]*xhat, 2); #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]); if temp <= params['noise_level']: was_feasible = True; if was_infeasible: break; else: lagmult = lagmultfactor*lagmult; residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; direction = -residual; iter = 0; elif temp > params['noise_level']: lagmult = lagmult/lagmultfactor; if was_feasible: xhat = xprev.copy(); break; was_infeasible = True; residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; direction = -residual; iter = 0; if lagmult > lagmultmax or lagmult < lagmultmin: break; xprev = xhat.copy(); #elseif norm(xprev-xhat)/norm(xhat) < 1e-2 # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]); # if strcmp(class(M), 'function_handle') # temp = norm(y-M(xhat), 2); # else # temp = norm(y-M*xhat, 2); # end # # if temp > 1.2*params.noise_level # was_infeasible = 1; # lagmult = lagmult/lagmultfactor; # xprev = xhat; # end #disp(['fidelity_error=', num2str(temp)]); print 'fidelity_error=',temp #if iter == params['max_inner_iteration']: #disp('max_inner_iteration reached. l2_accuracy not achieved.'); ## # Compute analysis representation for xhat ## #if strcmp(class(Omega),'function_handle') if hasattr(Omega, '__call__'): temp = Omega(xhat); arepr = temp(Lambdahat); else: ## here Omega is assumed to be a matrix arepr = numpy.dot(Omega[Lambdahat, :], xhat); return xhat,arepr,lagmult ## # This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x. ## #function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm) def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm): #if strcmp(class(M), 'function_handle') if hasattr(M, '__call__'): w = MH(M(x)); else: ## M and MH are matrices w = numpy.dot(numpy.dot(MH, M), x); if hasattr(Omega, '__call__'): v = Omega(x); vt = numpy.zeros(v.size); vt[L] = v[L].copy(); w = w + lm*OmegaH(vt); else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose w = w + lm*numpy.dot(numpy.dot(OmegaH[:, L],Omega[L, :]),x); return w def GAP(y, M, MH, Omega, OmegaH, params, xinit): #function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) ## # [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) # # Greedy Analysis Pursuit Algorithm # This aims to find an approximate (sometimes exact) solution of # xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon. # # Outputs: # xhat : estimate of the target cosparse vector x0. # Lambdahat : estimate of the cosupport of x0. # # Inputs: # y : observation/measurement vector of a target cosparse solution x0, # given by relation y = M * x0 + noise. # M : measurement matrix. This should be given either as a matrix or as a function handle # which implements linear transformation. # MH : conjugate transpose of M. # Omega : analysis operator. Like M, this should be given either as a matrix or as a function # handle which implements linear transformation. # OmegaH : conjugate transpose of OmegaH. # params : parameters that govern the behavior of the algorithm (mostly). # params.num_iteration : GAP performs this number of iterations. # params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration. # if the value is < 1, then the rows to be eliminated are determined by # j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|. # if the value is >= 1, then greedy_level is the number of rows to be # eliminated at each iteration. # params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than # this, GAP terminates. # params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method # is used to compute # argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon. # params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above # problem is solved. # params.noise_level : this corresponds to epsilon above. # xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1). # # Examples: # # Not particularly interesting: # >> d = 100; p = 110; m = 60; # >> M = randn(m, d); # >> Omega = randn(p, d); # >> y = M * x0 + noise; # >> params.num_iteration = 40; # >> params.greedy_level = 0.9; # >> params.stopping_coefficient_size = 1e-4; # >> params.l2solver = 'pseudoinverse'; # >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1)); # # Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist: # >> n = 128; # >> M = @(t) FourierSampling(t, n); # >> MH = @(u) FourierSamplingH(u, n); # >> Omega = @(t) FDAnalysis(t, n); # >> OmegaH = @(u) FDSynthesis(t, n); # >> params.num_iteration = 1000; # >> params.greedy_level = 50; # >> params.stopping_coefficient_size = 1e-5; # >> params.l2solver = 'cg'; # in fact, 'pseudoinverse' does not even make sense. # >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1)); # # Above: FourierSampling and FourierSamplingH are conjugate transpose of each other. # FDAnalysis and FDSynthesis are conjugate transpose of each other. # These routines are problem specific and need to be implemented by the user. #d = length(xinit(:)); d = xinit.size #if strcmp(class(Omega), 'function_handle') # p = length(Omega(zeros(d,1))); #else ## Omega is a matrix # p = size(Omega, 1); #end if hasattr(Omega, '__call__'): p = Omega(numpy.zeros((d,1))) else: p = Omega.shape[0] iter = 0 lagmult = 1e-4 #Lambdahat = 1:p; Lambdahat = numpy.arange(p) #while iter < params.num_iteration while iter < params["num_iteration"]: iter = iter + 1 #[xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params); xhat,analysis_repr,lagmult = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params) #[to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level); to_be_removed,maxcoef = FindRowsToRemove(analysis_repr, params["greedy_level"]) #disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]); #print '** maxcoef=',maxcoef,' target=',params['stopping_coefficient_size'],' rows_remaining=',Lambdahat.size,' lagmult=',lagmult if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params): break xinit = xhat.copy() #Lambdahat[to_be_removed] = [] Lambdahat = numpy.delete(Lambdahat.squeeze(),to_be_removed) #n = sqrt(d); #figure(9); #RR = zeros(2*n, n-1); #RR(Lambdahat) = 1; #XD = ones(n, n); #XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :); #XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :); #XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)'; #XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)'; #XD = FD2DiagnosisPlot(n, Lambdahat); #imshow(XD); #figure(10); #imshow(reshape(real(xhat), n, n)); #return; return xhat,Lambdahat def FindRowsToRemove(analysis_repr, greedy_level): #function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level) #abscoef = abs(analysis_repr(:)); abscoef = numpy.abs(analysis_repr) #n = length(abscoef); n = abscoef.size #maxcoef = max(abscoef); maxcoef = abscoef.max() if greedy_level >= 1: #qq = quantile(abscoef, 1.0-greedy_level/n); qq = sp.stats.mstats.mquantile(abscoef, 1.0-greedy_level/n, 0.5, 0.5) else: qq = maxcoef*greedy_level #to_be_removed = find(abscoef >= qq); # [0] needed because nonzero() returns a tuple of arrays! to_be_removed = numpy.nonzero(abscoef >= qq)[0] #return; return to_be_removed,maxcoef def check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params): #function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) #if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size if ('stopping_coefficient_size' in params) and maxcoef < params['stopping_coefficient_size']: return 1 #if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size if ('stopping_lagrange_multiplier_size' in params) and lagmult > params['stopping_lagrange_multiplier_size']: return 1 #if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change if ('stopping_relative_solution_change' in params) and numpy.linalg.norm(xhat-xinit)/numpy.linalg.norm(xhat) < params['stopping_relative_solution_change']: return 1 #if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity if ('stopping_cosparsity' in params) and Lambdahat.size() < params['stopping_cosparsity']: return 1 return 0