Mercurial > hg > pycsalgos
view matlab/GAP/GAP.m @ 51:eb4c66488ddf
Split algos.py and stdparams.py, added nesta to std1, 2, 3, 4
author | nikcleju |
---|---|
date | Wed, 07 Dec 2011 12:44:19 +0000 |
parents | ef63b89b375a |
children |
line wrap: on
line source
function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) %% % [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) % % Greedy Analysis Pursuit Algorithm % This aims to find an approximate (sometimes exact) solution of % xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon. % % Outputs: % xhat : estimate of the target cosparse vector x0. % Lambdahat : estimate of the cosupport of x0. % % Inputs: % y : observation/measurement vector of a target cosparse solution x0, % given by relation y = M * x0 + noise. % M : measurement matrix. This should be given either as a matrix or as a function handle % which implements linear transformation. % MH : conjugate transpose of M. % Omega : analysis operator. Like M, this should be given either as a matrix or as a function % handle which implements linear transformation. % OmegaH : conjugate transpose of OmegaH. % params : parameters that govern the behavior of the algorithm (mostly). % params.num_iteration : GAP performs this number of iterations. % params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration. % if the value is < 1, then the rows to be eliminated are determined by % j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|. % if the value is >= 1, then greedy_level is the number of rows to be % eliminated at each iteration. % params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than % this, GAP terminates. % params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method % is used to compute % argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon. % params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above % problem is solved. % params.noise_level : this corresponds to epsilon above. % xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1). % % Examples: % % Not particularly interesting: % >> d = 100; p = 110; m = 60; % >> M = randn(m, d); % >> Omega = randn(p, d); % >> y = M * x0 + noise; % >> params.num_iteration = 40; % >> params.greedy_level = 0.9; % >> params.stopping_coefficient_size = 1e-4; % >> params.l2solver = 'pseudoinverse'; % >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1)); % % Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist: % >> n = 128; % >> M = @(t) FourierSampling(t, n); % >> MH = @(u) FourierSamplingH(u, n); % >> Omega = @(t) FDAnalysis(t, n); % >> OmegaH = @(u) FDSynthesis(t, n); % >> params.num_iteration = 1000; % >> params.greedy_level = 50; % >> params.stopping_coefficient_size = 1e-5; % >> params.l2solver = 'cg'; % in fact, 'pseudoinverse' does not even make sense. % >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1)); % % Above: FourierSampling and FourierSamplingH are conjugate transpose of each other. % FDAnalysis and FDSynthesis are conjugate transpose of each other. % These routines are problem specific and need to be implemented by the user. d = length(xinit(:)); if strcmp(class(Omega), 'function_handle') p = length(Omega(zeros(d,1))); else %% Omega is a matrix p = size(Omega, 1); end iter = 0; lagmult = 1e-4; Lambdahat = 1:p; while iter < params.num_iteration iter = iter + 1; [xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params); [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level); %disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]); if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) break; end xinit = xhat; Lambdahat(to_be_removed) = []; %n = sqrt(d); %figure(9); %RR = zeros(2*n, n-1); %RR(Lambdahat) = 1; %XD = ones(n, n); %XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :); %XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :); %XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)'; %XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)'; %XD = FD2DiagnosisPlot(n, Lambdahat); %imshow(XD); %figure(10); %imshow(reshape(real(xhat), n, n)); end return; function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level) abscoef = abs(analysis_repr(:)); n = length(abscoef); maxcoef = max(abscoef); if greedy_level >= 1 qq = quantile(abscoef, 1-greedy_level/n); else qq = maxcoef*greedy_level; end to_be_removed = find(abscoef >= qq); return; function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) r = 0; if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size r = 1; return; end if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size r = 1; return; end if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change r = 1; return; end if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity r = 1; return; end