Mercurial > hg > pycsalgos
view pyCSalgos/SL0/SL0_approx.py @ 15:0d66a0aafb39
SL0_approx test working
author | nikcleju |
---|---|
date | Sat, 05 Nov 2011 22:10:06 +0000 |
parents | |
children | afcfd4d1d548 |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Sat Nov 05 21:29:09 2011 @author: Nic """ # -*- coding: utf-8 -*- """ Created on Sat Nov 05 18:39:54 2011 @author: Nic """ import numpy as np #function s=SL0(A, x, sigma_min, sigma_decrease_factor, mu_0, L, A_pinv, true_s) def SL0_approx(A, x, eps, sigma_min, sigma_decrease_factor=0.5, mu_0=2, L=3, A_pinv=None, true_s=None): if A_pinv is None: A_pinv = np.linalg.pinv(A) if true_s is not None: ShowProgress = True else: ShowProgress = False # Initialization #s = A\x; s = np.dot(A_pinv,x) sigma = 2.0 * np.abs(s).max() # Main Loop while sigma>sigma_min: for i in np.arange(L): delta = OurDelta(s,sigma) s = s - mu_0*delta # At this point, s no longer exactly satisfies x = A*s # The original SL0 algorithm projects s onto {s | x = As} with # s = s - np.dot(A_pinv,(np.dot(A,s)-x)) # Projection # We want to project s onto {s | |x-As| < eps} # We move onto the direction -A_pinv*(A*s-x), but only with a # smaller step: direction = np.dot(A_pinv,(np.dot(A,s)-x)) if (np.linalg.norm(np.dot(A,direction)) >= eps): s = s - (1.0 - eps/np.linalg.norm(np.dot(A,direction))) * direction #assert(np.linalg.norm(x - np.dot(A,s)) < eps + 1e-6) if ShowProgress: #fprintf(' sigma=#f, SNR=#f\n',sigma,estimate_SNR(s,true_s)) string = ' sigma=%f, SNR=%f\n' % sigma,estimate_SNR(s,true_s) print string sigma = sigma * sigma_decrease_factor return s #################################################################### #function delta=OurDelta(s,sigma) def OurDelta(s,sigma): return s * np.exp( (-np.abs(s)**2) / sigma**2) #################################################################### #function SNR=estimate_SNR(estim_s,true_s) def estimate_SNR(estim_s, true_s): err = true_s - estim_s return 10*np.log10((true_s**2).sum()/(err**2).sum())