Mercurial > hg > pycsalgos
diff matlab/GAP/GAP.m @ 17:ef63b89b375a
Started working on GAP, but not complete
author | nikcleju |
---|---|
date | Sun, 06 Nov 2011 20:58:11 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/GAP/GAP.m Sun Nov 06 20:58:11 2011 +0000 @@ -0,0 +1,144 @@ +function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) + +%% +% [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) +% +% Greedy Analysis Pursuit Algorithm +% This aims to find an approximate (sometimes exact) solution of +% xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon. +% +% Outputs: +% xhat : estimate of the target cosparse vector x0. +% Lambdahat : estimate of the cosupport of x0. +% +% Inputs: +% y : observation/measurement vector of a target cosparse solution x0, +% given by relation y = M * x0 + noise. +% M : measurement matrix. This should be given either as a matrix or as a function handle +% which implements linear transformation. +% MH : conjugate transpose of M. +% Omega : analysis operator. Like M, this should be given either as a matrix or as a function +% handle which implements linear transformation. +% OmegaH : conjugate transpose of OmegaH. +% params : parameters that govern the behavior of the algorithm (mostly). +% params.num_iteration : GAP performs this number of iterations. +% params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration. +% if the value is < 1, then the rows to be eliminated are determined by +% j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|. +% if the value is >= 1, then greedy_level is the number of rows to be +% eliminated at each iteration. +% params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than +% this, GAP terminates. +% params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method +% is used to compute +% argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon. +% params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above +% problem is solved. +% params.noise_level : this corresponds to epsilon above. +% xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1). +% +% Examples: +% +% Not particularly interesting: +% >> d = 100; p = 110; m = 60; +% >> M = randn(m, d); +% >> Omega = randn(p, d); +% >> y = M * x0 + noise; +% >> params.num_iteration = 40; +% >> params.greedy_level = 0.9; +% >> params.stopping_coefficient_size = 1e-4; +% >> params.l2solver = 'pseudoinverse'; +% >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1)); +% +% Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist: +% >> n = 128; +% >> M = @(t) FourierSampling(t, n); +% >> MH = @(u) FourierSamplingH(u, n); +% >> Omega = @(t) FDAnalysis(t, n); +% >> OmegaH = @(u) FDSynthesis(t, n); +% >> params.num_iteration = 1000; +% >> params.greedy_level = 50; +% >> params.stopping_coefficient_size = 1e-5; +% >> params.l2solver = 'cg'; % in fact, 'pseudoinverse' does not even make sense. +% >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1)); +% +% Above: FourierSampling and FourierSamplingH are conjugate transpose of each other. +% FDAnalysis and FDSynthesis are conjugate transpose of each other. +% These routines are problem specific and need to be implemented by the user. + +d = length(xinit(:)); + +if strcmp(class(Omega), 'function_handle') + p = length(Omega(zeros(d,1))); +else %% Omega is a matrix + p = size(Omega, 1); +end + +iter = 0; +lagmult = 1e-4; +Lambdahat = 1:p; +while iter < params.num_iteration + iter = iter + 1; + [xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params); + [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level); + %disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]); + if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) + break; + end + xinit = xhat; + Lambdahat(to_be_removed) = []; + + %n = sqrt(d); + %figure(9); + %RR = zeros(2*n, n-1); + %RR(Lambdahat) = 1; + %XD = ones(n, n); + %XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :); + %XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :); + %XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)'; + %XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)'; + %XD = FD2DiagnosisPlot(n, Lambdahat); + %imshow(XD); + %figure(10); + %imshow(reshape(real(xhat), n, n)); +end +return; + + +function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level) + + abscoef = abs(analysis_repr(:)); + n = length(abscoef); + maxcoef = max(abscoef); + if greedy_level >= 1 + qq = quantile(abscoef, 1-greedy_level/n); + else + qq = maxcoef*greedy_level; + end + + to_be_removed = find(abscoef >= qq); + return; + +function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) + + r = 0; + + if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size + r = 1; + return; + end + + if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size + r = 1; + return; + end + + if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change + r = 1; + return; + end + + if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity + r = 1; + return; + end