diff matlab/GAP/GAP.m @ 17:ef63b89b375a

Started working on GAP, but not complete
author nikcleju
date Sun, 06 Nov 2011 20:58:11 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/matlab/GAP/GAP.m	Sun Nov 06 20:58:11 2011 +0000
@@ -0,0 +1,144 @@
+function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
+
+%%
+% [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
+%
+% Greedy Analysis Pursuit Algorithm
+% This aims to find an approximate (sometimes exact) solution of
+%    xhat = argmin || Omega * x ||_0   subject to   || y - M * x ||_2 <= epsilon.
+%
+% Outputs:
+%   xhat : estimate of the target cosparse vector x0.
+%   Lambdahat : estimate of the cosupport of x0.
+%
+% Inputs:
+%   y : observation/measurement vector of a target cosparse solution x0,
+%       given by relation  y = M * x0 + noise.
+%   M : measurement matrix. This should be given either as a matrix or as a function handle
+%       which implements linear transformation.
+%   MH : conjugate transpose of M. 
+%   Omega : analysis operator. Like M, this should be given either as a matrix or as a function
+%           handle which implements linear transformation.
+%   OmegaH : conjugate transpose of OmegaH.
+%   params : parameters that govern the behavior of the algorithm (mostly).
+%      params.num_iteration : GAP performs this number of iterations.
+%      params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration.
+%                            if the value is < 1, then the rows to be eliminated are determined by
+%                                j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|.
+%                            if the value is >= 1, then greedy_level is the number of rows to be
+%                            eliminated at each iteration.
+%      params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than
+%                                         this, GAP terminates.
+%      params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method
+%                        is used to compute
+%                        argmin || Omega_Lambdahat * x ||_2   subject to  || y - M * x ||_2 <= epsilon.
+%      params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above 
+%                           problem is solved.
+%      params.noise_level : this corresponds to epsilon above.
+%   xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1).
+%
+% Examples:
+%
+% Not particularly interesting:
+% >> d = 100; p = 110; m = 60; 
+% >> M = randn(m, d);
+% >> Omega = randn(p, d);
+% >> y = M * x0 + noise;
+% >> params.num_iteration = 40;
+% >> params.greedy_level = 0.9;
+% >> params.stopping_coefficient_size = 1e-4;
+% >> params.l2solver = 'pseudoinverse';
+% >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1));
+%
+% Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist:
+% >> n = 128;
+% >> M = @(t) FourierSampling(t, n);
+% >> MH = @(u) FourierSamplingH(u, n);
+% >> Omega = @(t) FDAnalysis(t, n);
+% >> OmegaH = @(u) FDSynthesis(t, n);
+% >> params.num_iteration = 1000;
+% >> params.greedy_level = 50;
+% >> params.stopping_coefficient_size = 1e-5;
+% >> params.l2solver = 'cg';   % in fact, 'pseudoinverse' does not even make sense.
+% >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1));
+%
+% Above: FourierSampling and FourierSamplingH are conjugate transpose of each other.
+%        FDAnalysis and FDSynthesis are conjugate transpose of each other.
+%        These routines are problem specific and need to be implemented by the user.
+
+d = length(xinit(:));
+
+if strcmp(class(Omega), 'function_handle')
+    p = length(Omega(zeros(d,1)));
+else    %% Omega is a matrix
+    p = size(Omega, 1);
+end
+
+iter = 0;
+lagmult = 1e-4;
+Lambdahat = 1:p;
+while iter < params.num_iteration
+    iter = iter + 1;
+    [xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params);
+    [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level);
+    %disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]);
+    if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params)
+        break;
+    end
+    xinit = xhat;
+    Lambdahat(to_be_removed) = [];
+
+    %n = sqrt(d);
+    %figure(9);
+    %RR = zeros(2*n, n-1);
+    %RR(Lambdahat) = 1;
+    %XD = ones(n, n);
+    %XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :);
+    %XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :);
+    %XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)';
+    %XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)';
+    %XD = FD2DiagnosisPlot(n, Lambdahat);
+    %imshow(XD);
+    %figure(10);
+    %imshow(reshape(real(xhat), n, n));
+end
+return;
+
+
+function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level)
+
+    abscoef = abs(analysis_repr(:));
+    n = length(abscoef);
+    maxcoef = max(abscoef);
+    if greedy_level >= 1
+        qq = quantile(abscoef, 1-greedy_level/n);
+    else
+        qq = maxcoef*greedy_level;
+    end
+
+    to_be_removed = find(abscoef >= qq);
+    return;
+
+function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params)
+
+    r = 0;
+
+    if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size
+        r = 1;
+        return;
+    end
+
+    if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size
+        r = 1;
+        return;
+    end
+
+    if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change
+        r = 1;
+        return;
+    end
+
+    if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity
+        r = 1;
+        return;
+    end