Mercurial > hg > pycsalgos
diff pyCSalgos/ABS/ABSmixed.py @ 67:a8d96e67717e
Added the Analysis-By-Synthesis algorithms used in the papers "Analysis-based sparse reconstruction with synthesis-based solvers", "Choosing Analysis or Synthesis Recovery for Sparse Reconstruction" and "A generalization of synthesis and analysis sparsity"
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Tue, 09 Jul 2013 14:21:10 +0300 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pyCSalgos/ABS/ABSmixed.py Tue Jul 09 14:21:10 2013 +0300 @@ -0,0 +1,45 @@ +# -*- coding: utf-8 -*- +""" +Algorithms for approximate analysis recovery based on synthesis solvers (a.k.a. Analysis by Synthesis, ABS). +Approximate reconstruction, ABS-mixed. + +Author: Nicolae Cleju +""" +__author__ = "Nicolae Cleju" +__license__ = "GPL" +__email__ = "nikcleju@gmail.com" + + +import numpy + +# Import synthesis solvers from pyCSalgos package +import pyCSalgos.BP.l1qec +import pyCSalgos.SL0.SL0_approx + +def bp(y,M,Omega,epsilon, x0, lbtol=1e-3, mu=10, cgtol=1e-8, cgmaxiter=200, verbose=False): + """ + ABS-mixed: Basis Pursuit (based on l1magic toolbox) + """ + N,n = Omega.shape + D = numpy.linalg.pinv(Omega) + U,S,Vt = numpy.linalg.svd(D) + Aeps = numpy.dot(M,D) + Aexact = Vt[-(N-n):,:] + + return numpy.dot(D , pyCSalgos.BP.l1qec.l1qec_logbarrier(x0,Aeps,Aeps.T,y,epsilon,Aexact,Aexact.T,numpy.zeros(N-n), lbtol, mu, cgtol, cgmaxiter, verbose)) + +def sl0(y,M,Omega,epsilon, sigma_min, sigma_decrease_factor=0.5, mu_0=2, L=3, Aeps_pinv=None, Aexact_pinv=None, true_s=None): + """ + ABS-mixed: Smooth L0 (SL0) + """ + N,n = Omega.shape + D = numpy.linalg.pinv(Omega) + U,S,Vt = numpy.linalg.svd(D) + Aeps = numpy.dot(M,D) + Aexact = Vt[-(N-n):,:] + + #return numpy.dot(D, pyCSalgos.SL0.SL0_approx.SL0_approx_analysis(Aeps,Aexact,y,epsilon,sigma_min,sigma_decrease_factor,mu_0,L,Aeps_pinv,Aexact_pinv,true_s)) + #return numpy.dot(D, pyCSalgos.SL0.SL0_approx.SL0_robust_analysis(Aeps,Aexact,y,epsilon,sigma_min,sigma_decrease_factor,mu_0,L,Aeps_pinv,Aexact_pinv,true_s)) + #return numpy.dot(D, pyCSalgos.SL0.SL0_approx.SL0_approx_analysis_unconstrained(Aeps,Aexact,y,epsilon,sigma_min,sigma_decrease_factor,mu_0,L,Aeps_pinv,Aexact_pinv,true_s)) + return numpy.dot(D, pyCSalgos.SL0.SL0_approx.SL0_approx_analysis_dai(Aeps,Aexact,y,epsilon,sigma_min,sigma_decrease_factor,mu_0,L,Aeps_pinv,Aexact_pinv,true_s)) + \ No newline at end of file