diff matlab/BP/l1qc_newton.m @ 2:735a0e24575c

Organized folders: added tests, apps, matlab, docs folders. Added __init__.py files
author nikcleju
date Fri, 21 Oct 2011 13:53:49 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/matlab/BP/l1qc_newton.m	Fri Oct 21 13:53:49 2011 +0000
@@ -0,0 +1,150 @@
+% l1qc_newton.m
+%
+% Newton algorithm for log-barrier subproblems for l1 minimization
+% with quadratic constraints.
+%
+% Usage: 
+% [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, 
+%                             newtontol, newtonmaxiter, cgtol, cgmaxiter)
+%
+% x0,u0 - starting points
+%
+% A - Either a handle to a function that takes a N vector and returns a K 
+%     vector , or a KxN matrix.  If A is a function handle, the algorithm
+%     operates in "largescale" mode, solving the Newton systems via the
+%     Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+%      If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar, constraint relaxation parameter
+%
+% tau - Log barrier parameter.
+%
+% newtontol - Terminate when the Newton decrement is <= newtontol.
+%         Default = 1e-3.
+%
+% newtonmaxiter - Maximum number of iterations.
+%         Default = 50.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+%     Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+%     if A is a matrix.
+%     Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+
+function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) 
+
+% check if the matrix A is implicit or explicit
+largescale = isa(A,'function_handle');
+
+% line search parameters
+alpha = 0.01;
+beta = 0.5;  
+
+if (~largescale), AtA = A'*A; end
+
+% initial point
+x = x0;
+u = u0;
+if (largescale), r = A(x) - b; else  r = A*x - b; end
+fu1 = x - u;
+fu2 = -x - u;
+fe = 1/2*(r'*r - epsilon^2);
+f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe));
+
+niter = 0;
+done = 0;
+while (~done)
+  
+  if (largescale), atr = At(r); else  atr = A'*r; end
+  
+  ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
+  ntgu = -tau - 1./fu1 - 1./fu2;
+  gradf = -(1/tau)*[ntgz; ntgu];
+  
+  sig11 = 1./fu1.^2 + 1./fu2.^2;
+  sig12 = -1./fu1.^2 + 1./fu2.^2;
+  sigx = sig11 - sig12.^2./sig11;
+    
+  w1p = ntgz - sig12./sig11.*ntgu;
+  if (largescale)
+    h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
+    [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
+    if (cgres > 1/2)
+      disp('Cannot solve system.  Returning previous iterate.  (See Section 4 of notes for more information.)');
+      xp = x;  up = u;
+      return
+    end
+    Adx = A(dx);
+  else
+    H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
+    opts.POSDEF = true; opts.SYM = true;
+    [dx,hcond] = linsolve(H11p, w1p, opts);
+    if (hcond < 1e-14)
+      disp('Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)');
+      xp = x;  up = u;
+      return
+    end
+    Adx = A*dx;
+  end
+  du = (1./sig11).*ntgu - (sig12./sig11).*dx;  
+ 
+  % minimum step size that stays in the interior
+  ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
+  aqe = Adx'*Adx;   bqe = 2*r'*Adx;   cqe = r'*r - epsilon^2;
+  smax = min(1,min([...
+    -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
+    (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
+    ]));
+  s = (0.99)*smax;
+  
+  % backtracking line search
+  suffdec = 0;
+  backiter = 0;
+  while (~suffdec)
+    xp = x + s*dx;  up = u + s*du;  rp = r + s*Adx;
+    fu1p = xp - up;  fu2p = -xp - up;  fep = 1/2*(rp'*rp - epsilon^2);
+    fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
+    flin = f + alpha*s*(gradf'*[dx; du]);
+    suffdec = (fp <= flin);
+    s = beta*s;
+    backiter = backiter + 1;
+    if (backiter > 32)
+      disp('Stuck on backtracking line search, returning previous iterate.  (See Section 4 of notes for more information.)');
+      xp = x;  up = u;
+      return
+    end
+  end
+  
+  % set up for next iteration
+  x = xp; u = up;  r = rp;
+  fu1 = fu1p;  fu2 = fu2p;  fe = fep;  f = fp;
+  
+  lambda2 = -(gradf'*[dx; du]);
+  stepsize = s*norm([dx; du]);
+  niter = niter + 1;
+  done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
+  
+  disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ...
+    niter, f, lambda2/2, stepsize));
+  if (largescale)
+    disp(sprintf('                CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+  else
+    disp(sprintf('                  H11p condition number = %8.3e', hcond));
+  end
+      
+end
+
+
+
+