Mercurial > hg > pycsalgos
diff pyCSalgos/GAP/GAP.py @ 21:2805288d6656
2011 11 08 Worked from school. Commit 2
author | nikcleju |
---|---|
date | Tue, 08 Nov 2011 14:45:35 +0000 |
parents | |
children | dd0e78b5bb13 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pyCSalgos/GAP/GAP.py Tue Nov 08 14:45:35 2011 +0000 @@ -0,0 +1,473 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Oct 13 14:05:22 2011 + +@author: ncleju +""" + +#from numpy import * +#from scipy import * +import numpy as np +import scipy as sp +import scipy.stats #from scipy import stats +import scipy.linalg #from scipy import lnalg +import math + +from numpy.random import RandomState +rng = RandomState() + +def Generate_Analysis_Operator(d, p): + # generate random tight frame with equal column norms + if p == d: + T = rng.randn(d,d); + [Omega, discard] = np.qr(T); + else: + Omega = rng.randn(p, d); + T = np.zeros((p, d)); + tol = 1e-8; + max_j = 200; + j = 1; + while (sum(sum(abs(T-Omega))) > np.dot(tol,np.dot(p,d)) and j < max_j): + j = j + 1; + T = Omega; + [U, S, Vh] = sp.linalg.svd(Omega); + V = Vh.T + #Omega = U * [eye(d); zeros(p-d,d)] * V'; + Omega2 = np.dot(np.dot(U, np.concatenate((np.eye(d), np.zeros((p-d,d))))), V.transpose()) + #Omega = diag(1./sqrt(diag(Omega*Omega')))*Omega; + Omega = np.dot(np.diag(1.0 / np.sqrt(np.diag(np.dot(Omega2,Omega2.transpose())))), Omega2) + #end + ##disp(j); + #end + return Omega + + +def Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr): + #function [x0,y,M,LambdaMat] = Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr) + + # Building an analysis problem, which includes the ingredients: + # - Omega - the analysis operator of size p*d + # - M is anunderdetermined measurement matrix of size m*d (m<d) + # - x0 is a vector of length d that satisfies ||Omega*x0||=p-k + # - Lambda is the true location of these k zeros in Omega*x0 + # - a measurement vector y0=Mx0 is computed + # - noise contaminated measurement vector y is obtained by + # y = y0 + n where n is an additive gaussian noise with norm(n,2)/norm(y0,2) = noiselevel + # Added by Nic: + # - Omega = analysis operator + # - normstr: if 'l0', generate l0 sparse vector (unchanged). If 'l1', + # generate a vector of Laplacian random variables (gamma) and + # pseudoinvert to find x + + # Omega is known as input parameter + #Omega=Generate_Analysis_Operator(d, p); + # Omega = randn(p,d); + # for i = 1:size(Omega,1) + # Omega(i,:) = Omega(i,:) / norm(Omega(i,:)); + # end + + #Init + LambdaMat = np.zeros((k,numvectors)) + x0 = np.zeros((d,numvectors)) + y = np.zeros((m,numvectors)) + realnoise = np.zeros((m,numvectors)) + + M = rng.randn(m,d); + + #for i=1:numvectors + for i in range(0,numvectors): + + # Generate signals + #if strcmp(normstr,'l0') + if normstr == 'l0': + # Unchanged + + #Lambda=randperm(p); + Lambda = rng.permutation(int(p)); + Lambda = np.sort(Lambda[0:k]); + LambdaMat[:,i] = Lambda; # store for output + + # The signal is drawn at random from the null-space defined by the rows + # of the matreix Omega(Lambda,:) + [U,D,Vh] = sp.linalg.svd(Omega[Lambda,:]); + V = Vh.T + NullSpace = V[:,k:]; + #print np.dot(NullSpace, rng.randn(d-k,1)).shape + #print x0[:,i].shape + x0[:,i] = np.squeeze(np.dot(NullSpace, rng.randn(d-k,1))); + # Nic: add orthogonality noise + # orthonoiseSNRdb = 6; + # n = randn(p,1); + # #x0(:,i) = x0(:,i) + n / norm(n)^2 * norm(x0(:,i))^2 / 10^(orthonoiseSNRdb/10); + # n = n / norm(n)^2 * norm(Omega * x0(:,i))^2 / 10^(orthonoiseSNRdb/10); + # x0(:,i) = pinv(Omega) * (Omega * x0(:,i) + n); + + #elseif strcmp(normstr, 'l1') + elif normstr == 'l1': + print('Nic says: not implemented yet') + raise Exception('Nic says: not implemented yet') + #gamma = laprnd(p,1,0,1); + #x0(:,i) = Omega \ gamma; + else: + #error('normstr must be l0 or l1!'); + print('Nic says: not implemented yet') + raise Exception('Nic says: not implemented yet') + #end + + # Acquire measurements + y[:,i] = np.dot(M, x0[:,i]) + + # Add noise + t_norm = np.linalg.norm(y[:,i],2); + n = np.squeeze(rng.randn(m, 1)); + y[:,i] = y[:,i] + noiselevel * t_norm * n / np.linalg.norm(n, 2); + realnoise[:,i] = noiselevel * t_norm * n / np.linalg.norm(n, 2) + #end + + return x0,y,M,LambdaMat,realnoise + +##################### + +#function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params) +def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params): + + # + # This function aims to compute + # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon. + # arepr is the analysis representation corresponding to Lambdahat, i.e., + # arepr = Omega(Lambdahat, :) * xhat. + # The function also returns the lagrange multiplier in the process used to compute xhat. + # + # Inputs: + # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise. + # M : Measurement matrix + # MH : M', the conjugate transpose of M + # Omega : analysis operator + # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator. + # Lambdahat : an index set indicating some rows of Omega. + # xinit : initial estimate that will be used for the conjugate gradient algorithm. + # ilagmult : initial lagrange multiplier to be used in + # params : parameters + # params.noise_level : this corresponds to epsilon above. + # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method. + # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method + # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used. + # + + #d = length(xinit) + d = xinit.size + lagmultmax = 1e5; + lagmultmin = 1e-4; + lagmultfactor = 2.0; + accuracy_adjustment_exponent = 4/5.; + lagmult = max(min(ilagmult, lagmultmax), lagmultmin); + was_infeasible = 0; + was_feasible = 0; + + ####################################################################### + ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.) + ####################################################################### + #if strcmp(params.l2solver, 'pseudoinverse') + if params['l2solver'] == 'pseudoinverse': + #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double') + if M.dtype == 'float64' and Omega.dtype == 'double': + while True: + alpha = math.sqrt(lagmult); + xhat = np.linalg.lstsq(np.concatenate((M, alpha*Omega[Lambdahat,:])), np.concatenate((y, np.zeros(Lambdahat.size))))[0] + temp = np.linalg.norm(y - np.dot(M,xhat), 2); + #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]); + if temp <= params['noise_level']: + was_feasible = True; + if was_infeasible: + break; + else: + lagmult = lagmult*lagmultfactor; + elif temp > params['noise_level']: + was_infeasible = True; + if was_feasible: + xhat = xprev.copy(); + break; + lagmult = lagmult/lagmultfactor; + if lagmult < lagmultmin or lagmult > lagmultmax: + break; + xprev = xhat.copy(); + arepr = np.dot(Omega[Lambdahat, :], xhat); + return xhat,arepr,lagmult; + + + ######################################################################## + ## Computation using conjugate gradient method. + ######################################################################## + #if strcmp(class(MH),'function_handle') + if hasattr(MH, '__call__'): + b = MH(y); + else: + b = np.dot(MH, y); + + norm_b = np.linalg.norm(b, 2); + xhat = xinit.copy(); + xprev = xinit.copy(); + residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; + direction = -residual; + iter = 0; + + while iter < params.max_inner_iteration: + iter = iter + 1; + alpha = np.linalg.norm(residual,2)**2 / np.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult)); + xhat = xhat + alpha*direction; + prev_residual = residual.copy(); + residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; + beta = np.linalg.norm(residual,2)**2 / np.linalg.norm(prev_residual,2)**2; + direction = -residual + beta*direction; + + if np.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']: + #if strcmp(class(M), 'function_handle') + if hasattr(M, '__call__'): + temp = np.linalg.norm(y-M(xhat), 2); + else: + temp = np.linalg.norm(y-np.dot(M,xhat), 2); + + #if strcmp(class(Omega), 'function_handle') + if hasattr(Omega, '__call__'): + u = Omega(xhat); + u = math.sqrt(lagmult)*np.linalg.norm(u(Lambdahat), 2); + else: + u = math.sqrt(lagmult)*np.linalg.norm(Omega[Lambdahat,:]*xhat, 2); + + + #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]); + + if temp <= params['noise_level']: + was_feasible = True; + if was_infeasible: + break; + else: + lagmult = lagmultfactor*lagmult; + residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; + direction = -residual; + iter = 0; + elif temp > params['noise_level']: + lagmult = lagmult/lagmultfactor; + if was_feasible: + xhat = xprev.copy(); + break; + was_infeasible = True; + residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b; + direction = -residual; + iter = 0; + if lagmult > lagmultmax or lagmult < lagmultmin: + break; + xprev = xhat.copy(); + #elseif norm(xprev-xhat)/norm(xhat) < 1e-2 + # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]); + # if strcmp(class(M), 'function_handle') + # temp = norm(y-M(xhat), 2); + # else + # temp = norm(y-M*xhat, 2); + # end + # + # if temp > 1.2*params.noise_level + # was_infeasible = 1; + # lagmult = lagmult/lagmultfactor; + # xprev = xhat; + # end + + #disp(['fidelity_error=', num2str(temp)]); + print 'fidelity_error=',temp + #if iter == params['max_inner_iteration']: + #disp('max_inner_iteration reached. l2_accuracy not achieved.'); + + ## + # Compute analysis representation for xhat + ## + #if strcmp(class(Omega),'function_handle') + if hasattr(Omega, '__call__'): + temp = Omega(xhat); + arepr = temp(Lambdahat); + else: ## here Omega is assumed to be a matrix + arepr = np.dot(Omega[Lambdahat, :], xhat); + + return xhat,arepr,lagmult + + +## +# This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x. +## +#function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm) +def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm): + #if strcmp(class(M), 'function_handle') + if hasattr(M, '__call__'): + w = MH(M(x)); + else: ## M and MH are matrices + w = np.dot(np.dot(MH, M), x); + + if hasattr(Omega, '__call__'): + v = Omega(x); + vt = np.zeros(v.size); + vt[L] = v[L].copy(); + w = w + lm*OmegaH(vt); + else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose + w = w + lm*np.dot(np.dot(OmegaH[:, L],Omega[L, :]),x); + + return w + +def GAP(y, M, MH, Omega, OmegaH, params, xinit): + #function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) + + ## + # [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit) + # + # Greedy Analysis Pursuit Algorithm + # This aims to find an approximate (sometimes exact) solution of + # xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon. + # + # Outputs: + # xhat : estimate of the target cosparse vector x0. + # Lambdahat : estimate of the cosupport of x0. + # + # Inputs: + # y : observation/measurement vector of a target cosparse solution x0, + # given by relation y = M * x0 + noise. + # M : measurement matrix. This should be given either as a matrix or as a function handle + # which implements linear transformation. + # MH : conjugate transpose of M. + # Omega : analysis operator. Like M, this should be given either as a matrix or as a function + # handle which implements linear transformation. + # OmegaH : conjugate transpose of OmegaH. + # params : parameters that govern the behavior of the algorithm (mostly). + # params.num_iteration : GAP performs this number of iterations. + # params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration. + # if the value is < 1, then the rows to be eliminated are determined by + # j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|. + # if the value is >= 1, then greedy_level is the number of rows to be + # eliminated at each iteration. + # params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than + # this, GAP terminates. + # params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method + # is used to compute + # argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon. + # params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above + # problem is solved. + # params.noise_level : this corresponds to epsilon above. + # xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1). + # + # Examples: + # + # Not particularly interesting: + # >> d = 100; p = 110; m = 60; + # >> M = randn(m, d); + # >> Omega = randn(p, d); + # >> y = M * x0 + noise; + # >> params.num_iteration = 40; + # >> params.greedy_level = 0.9; + # >> params.stopping_coefficient_size = 1e-4; + # >> params.l2solver = 'pseudoinverse'; + # >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1)); + # + # Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist: + # >> n = 128; + # >> M = @(t) FourierSampling(t, n); + # >> MH = @(u) FourierSamplingH(u, n); + # >> Omega = @(t) FDAnalysis(t, n); + # >> OmegaH = @(u) FDSynthesis(t, n); + # >> params.num_iteration = 1000; + # >> params.greedy_level = 50; + # >> params.stopping_coefficient_size = 1e-5; + # >> params.l2solver = 'cg'; # in fact, 'pseudoinverse' does not even make sense. + # >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1)); + # + # Above: FourierSampling and FourierSamplingH are conjugate transpose of each other. + # FDAnalysis and FDSynthesis are conjugate transpose of each other. + # These routines are problem specific and need to be implemented by the user. + + #d = length(xinit(:)); + d = xinit.size + + #if strcmp(class(Omega), 'function_handle') + # p = length(Omega(zeros(d,1))); + #else ## Omega is a matrix + # p = size(Omega, 1); + #end + if hasattr(Omega, '__call__'): + p = Omega(np.zeros((d,1))) + else: + p = Omega.shape[0] + + + iter = 0 + lagmult = 1e-4 + #Lambdahat = 1:p; + Lambdahat = np.arange(p) + #while iter < params.num_iteration + while iter < params["num_iteration"]: + iter = iter + 1 + #[xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params); + xhat,analysis_repr,lagmult = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params) + #[to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level); + to_be_removed, maxcoef = FindRowsToRemove(analysis_repr, params["greedy_level"]) + #disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]); + #print '** maxcoef=',maxcoef,' target=',params['stopping_coefficient_size'],' rows_remaining=',Lambdahat.size,' lagmult=',lagmult + if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params): + break + + xinit = xhat.copy() + #Lambdahat[to_be_removed] = [] + Lambdahat = np.delete(Lambdahat, to_be_removed) + + #n = sqrt(d); + #figure(9); + #RR = zeros(2*n, n-1); + #RR(Lambdahat) = 1; + #XD = ones(n, n); + #XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :); + #XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :); + #XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)'; + #XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)'; + #XD = FD2DiagnosisPlot(n, Lambdahat); + #imshow(XD); + #figure(10); + #imshow(reshape(real(xhat), n, n)); + + #return; + return xhat, Lambdahat + +def FindRowsToRemove(analysis_repr, greedy_level): +#function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level) + + #abscoef = abs(analysis_repr(:)); + abscoef = np.abs(analysis_repr) + #n = length(abscoef); + n = abscoef.size + #maxcoef = max(abscoef); + maxcoef = abscoef.max() + if greedy_level >= 1: + #qq = quantile(abscoef, 1.0-greedy_level/n); + qq = sp.stats.mstats.mquantile(abscoef, 1.0-greedy_level/n, 0.5, 0.5) + else: + qq = maxcoef*greedy_level + + #to_be_removed = find(abscoef >= qq); + to_be_removed = np.nonzero(abscoef >= qq) + #return; + return to_be_removed, maxcoef + +def check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params): +#function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params) + + #if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size + if ('stopping_coefficient_size' in params) and maxcoef < params['stopping_coefficient_size']: + return 1 + + #if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size + if ('stopping_lagrange_multiplier_size' in params) and lagmult > params['stopping_lagrange_multiplier_size']: + return 1 + + #if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change + if ('stopping_relative_solution_change' in params) and np.linalg.norm(xhat-xinit)/np.linalg.norm(xhat) < params['stopping_relative_solution_change']: + return 1 + + #if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity + if ('stopping_cosparsity' in params) and Lambdahat.size() < params['stopping_cosparsity']: + return 1 + + return 0 \ No newline at end of file