Mercurial > hg > pycsalgos
comparison scripts/ABSapprox.py @ 25:dd0e78b5bb13
Added .squeeze() in GAP function to avoid strange error in numpy.delete(), which wasn't raised on my laptop but was raised on octave
author | nikcleju |
---|---|
date | Wed, 09 Nov 2011 00:55:45 +0000 |
parents | c07440417bd8 |
children | 1a88766113a9 |
comparison
equal
deleted
inserted
replaced
24:c07440417bd8 | 25:dd0e78b5bb13 |
---|---|
6 """ | 6 """ |
7 | 7 |
8 import numpy as np | 8 import numpy as np |
9 import scipy.io | 9 import scipy.io |
10 import math | 10 import math |
11 import matplotlib.pyplot as plt | 11 #import matplotlib.pyplot as plt |
12 import matplotlib.cm as cm | 12 #import matplotlib.cm as cm |
13 import pyCSalgos | 13 import pyCSalgos |
14 import pyCSalgos.GAP.GAP | 14 import pyCSalgos.GAP.GAP |
15 import pyCSalgos.SL0.SL0_approx | 15 import pyCSalgos.SL0.SL0_approx |
16 | 16 |
17 # Define functions that prepare arguments for each algorithm call | 17 # Define functions that prepare arguments for each algorithm call |
53 | 53 |
54 nalgosN = len(algosN) | 54 nalgosN = len(algosN) |
55 nalgosL = len(algosL) | 55 nalgosL = len(algosL) |
56 | 56 |
57 #Set up experiment parameters | 57 #Set up experiment parameters |
58 d = 50; | 58 d = 50.0; |
59 sigma = 2.0 | 59 sigma = 2.0 |
60 deltas = np.arange(0.05,0.95,0.05) | 60 deltas = np.arange(0.05,0.95,0.05) |
61 rhos = np.arange(0.05,0.95,0.05) | 61 rhos = np.arange(0.05,0.95,0.05) |
62 #deltas = np.array([0.05,0.95]) | 62 #deltas = np.array([0.15,0.95]) |
63 #rhos = np.array([0.05,0.95]) | 63 #rhos = np.array([0.15,0.95]) |
64 #deltas = np.array([0.05]) | 64 #deltas = np.array([0.05]) |
65 #rhos = np.array([0.05]) | 65 #rhos = np.array([0.05]) |
66 #delta = 0.8; | 66 #delta = 0.8; |
67 #rho = 0.15; | 67 #rho = 0.15; |
68 numvects = 100; # Number of vectors to generate | 68 numvects = 20; # Number of vectors to generate |
69 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy | 69 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy |
70 # Values for lambda | 70 # Values for lambda |
71 #lambdas = [0 10.^linspace(-5, 4, 10)]; | 71 #lambdas = [0 10.^linspace(-5, 4, 10)]; |
72 lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) | 72 #lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) |
73 lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000]) | |
73 | 74 |
74 meanmatrix = dict() | 75 meanmatrix = dict() |
75 for i,algo in zip(np.arange(nalgosN),algosN): | 76 for i,algo in zip(np.arange(nalgosN),algosN): |
76 meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size)) | 77 meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size)) |
77 for i,algo in zip(np.arange(nalgosL),algosL): | 78 for i,algo in zip(np.arange(nalgosL),algosL): |