comparison pyCSalgos/BP/l1qec.py @ 37:afcfd4d1d548

17.11.2011 Lots of stuff: Implemented l1qec() (variant of l1 minimization with both quadratic and equality constraints - no ABS, no lambda) Implemented SL0a2() (variant of SL0a approximate recovery with both quadratic and equality constraints - no ABS, no lambda) Fixed HUGE bug: was running SL0 instead of BP!!!
author nikcleju
date Thu, 17 Nov 2011 17:29:54 +0000
parents
children
comparison
equal deleted inserted replaced
36:539b21849166 37:afcfd4d1d548
1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Nov 17 15:47:36 2011
4
5 Solve l1 minimization with quadratic AND equality constraints
6
7 @author: ncleju
8 """
9
10
11 import numpy as np
12 import scipy.linalg
13 import math
14
15 class l1qecInputValueError(Exception):
16 pass
17
18 # This is not normally used, so it is not tested, probably doesn't work
19 def cgsolve(A, b, tol, maxiter, verbose=1):
20 raise Exception('Shouldn\'t run cgsolve(), as this is absolutely not tested. Comment this if you really want to proceed.')
21
22
23 #if (nargin < 5), verbose = 1; end
24 # Optional argument
25
26 #implicit = isa(A,'function_handle');
27 if hasattr(A, '__call__'):
28 implicit = True
29 else:
30 implicit = False
31
32 x = np.zeros(b.size)
33 r = b.copy()
34 d = r.copy()
35 delta = np.vdot(r,r)
36 delta0 = np.vdot(b,b)
37 numiter = 0
38 bestx = x.copy()
39 bestres = math.sqrt(delta/delta0)
40 while (numiter < maxiter) and (delta > tol**2*delta0):
41
42 # q = A*d
43 #if (implicit), q = A(d); else q = A*d; end
44 if implicit:
45 q = A(d)
46 else:
47 q = np.dot(A,d)
48
49 alpha = delta/np.vdot(d,q)
50 x = x + alpha*d
51
52 if divmod(numiter+1,50)[1] == 0:
53 # r = b - Aux*x
54 #if (implicit), r = b - A(x); else r = b - A*x; end
55 if implicit:
56 r = b - A(x)
57 else:
58 r = b - np.dot(A,x)
59 else:
60 r = r - alpha*q
61 #end
62
63 deltaold = delta;
64 delta = np.vdot(r,r)
65 beta = delta/deltaold;
66 d = r + beta*d
67 numiter = numiter + 1
68 if (math.sqrt(delta/delta0) < bestres):
69 bestx = x.copy()
70 bestres = math.sqrt(delta/delta0)
71 #end
72
73 if ((verbose) and (divmod(numiter,verbose)[1]==0)):
74 #disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
75 # numiter, bestres, sqrt(delta/delta0)));
76 print 'cg: Iter = ',numiter,', Best residual = ',bestres,', Current residual = ',math.sqrt(delta/delta0)
77 #end
78
79 #end
80
81 if (verbose):
82 #disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
83 print 'cg: Iterations = ',numiter,', best residual = ',bestres
84 #end
85 x = bestx.copy()
86 res = bestres
87 iter = numiter
88
89 return x,res,iter
90
91
92
93 def l1qec_newton(x0, u0, A, At, b, epsilon, Aexact, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter, verbose=False):
94
95 # check if the matrix A is implicit or explicit
96 #largescale = isa(A,'function_handle');
97 if hasattr(A, '__call__'):
98 largescale = True
99 else:
100 largescale = False
101
102 # line search parameters
103 alpha = 0.01
104 beta = 0.5
105
106 #if (~largescale), AtA = A'*A; end
107 if not largescale:
108 AtA = np.dot(A.T,A)
109
110 # initial point
111 x = x0.copy()
112 u = u0.copy()
113 #if (largescale), r = A(x) - b; else r = A*x - b; end
114 if largescale:
115 r = A(x) - b
116 else:
117 r = np.dot(A,x) - b
118
119 fu1 = x - u
120 fu2 = -x - u
121 fe = 1.0/2*(np.vdot(r,r) - epsilon**2)
122 f = u.sum() - (1.0/tau)*(np.log(-fu1).sum() + np.log(-fu2).sum() + math.log(-fe))
123
124 niter = 0
125 done = 0
126 while not done:
127
128 #if (largescale), atr = At(r); else atr = A'*r; end
129 if largescale:
130 atr = At(r)
131 else:
132 atr = np.dot(A.T,r)
133
134 #ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
135 ntgz = 1.0/fu1 - 1.0/fu2 + 1.0/fe*atr
136 #ntgu = -tau - 1./fu1 - 1./fu2;
137 ntgu = -tau - 1.0/fu1 - 1.0/fu2
138 #gradf = -(1/tau)*[ntgz; ntgu];
139 gradf = -(1.0/tau)*np.concatenate((ntgz, ntgu),0)
140
141 #sig11 = 1./fu1.^2 + 1./fu2.^2;
142 sig11 = 1.0/(fu1**2) + 1.0/(fu2**2)
143 #sig12 = -1./fu1.^2 + 1./fu2.^2;
144 sig12 = -1.0/(fu1**2) + 1.0/(fu2**2)
145 #sigx = sig11 - sig12.^2./sig11;
146 sigx = sig11 - (sig12**2)/sig11
147
148 #w1p = ntgz - sig12./sig11.*ntgu;
149 w1p = ntgz - sig12/sig11*ntgu
150 if largescale:
151 #h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
152 h11pfun = lambda z: sigx*z - (1.0/fe)*At(A(z)) + 1.0/(fe**2)*np.dot(np.dot(atr.T,z),atr)
153 dx,cgres,cgiter = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0)
154 if (cgres > 1.0/2):
155 if verbose:
156 print 'Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'
157 xp = x.copy()
158 up = u.copy()
159 return xp,up,niter
160 #end
161 Adx = A(dx)
162 else:
163 #H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
164 # Attention: atr is column vector, so atr*atr' means outer(atr,atr)
165 H11p = np.diag(sigx) - (1.0/fe)*AtA + (1.0/fe)**2*np.outer(atr,atr)
166 #opts.POSDEF = true; opts.SYM = true;
167 #[dx,hcond] = linsolve(H11p, w1p, opts);
168 #if (hcond < 1e-14)
169 # disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
170 # xp = x; up = u;
171 # return
172 #end
173
174 # Nic says: from tveq_newton.m
175 K = Aexact.shape[0]
176 afac = (np.diag(H11p)).max()
177 #Hp = [H11p afac*A'; afac*A zeros(K)])
178 Hp = np.vstack(( np.hstack((H11p,afac*Aexact.T)) , np.hstack((afac*Aexact,np.zeros((K,K)))) ))
179 wp = np.concatenate((w1p , np.zeros(K)))
180 try:
181 #dx = scipy.linalg.solve(H11p, w1p, sym_pos=True)
182 #hcond = 1.0/np.linalg.cond(H11p)
183 dxv = scipy.linalg.solve(Hp, wp, sym_pos=False) # Only symmetric, not posdef
184 dx = dxv[:x0.size]
185 hcond = 1.0/np.linalg.cond(Hp)
186 except scipy.linalg.LinAlgError:
187 if verbose:
188 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
189 xp = x.copy()
190 up = u.copy()
191 return xp,up,niter
192 if hcond < 1e-14:
193 if verbose:
194 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
195 xp = x.copy()
196 up = u.copy()
197 return xp,up,niter
198
199 #Adx = A*dx;
200 Adx = np.dot(A,dx)
201 #end
202 #du = (1./sig11).*ntgu - (sig12./sig11).*dx;
203 du = (1.0/sig11)*ntgu - (sig12/sig11)*dx;
204
205 # minimum step size that stays in the interior
206 #ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
207 ifu1 = np.nonzero((dx-du)>0)
208 ifu2 = np.nonzero((-dx-du)>0)
209 #aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
210 aqe = np.dot(Adx.T,Adx)
211 bqe = 2*np.dot(r.T,Adx)
212 cqe = np.vdot(r,r) - epsilon**2
213 #smax = min(1,min([...
214 # -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
215 # (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
216 # ]));
217 smax = min(1,np.concatenate( (-fu1[ifu1]/(dx[ifu1]-du[ifu1]) , -fu2[ifu2]/(-dx[ifu2]-du[ifu2]) , np.array([ (-bqe + math.sqrt(bqe**2-4*aqe*cqe))/(2*aqe) ]) ) , 0).min())
218
219 s = 0.99 * smax
220
221 # backtracking line search
222 suffdec = 0
223 backiter = 0
224 while not suffdec:
225 #xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
226 xp = x + s*dx
227 up = u + s*du
228 rp = r + s*Adx
229 #fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
230 fu1p = xp - up
231 fu2p = -xp - up
232 fep = 0.5*(np.vdot(rp,rp) - epsilon**2)
233 #fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
234 fp = up.sum() - (1.0/tau)*(np.log(-fu1p).sum() + np.log(-fu2p).sum() + math.log(-fep))
235 #flin = f + alpha*s*(gradf'*[dx; du]);
236 flin = f + alpha*s*np.dot(gradf.T , np.concatenate((dx,du),0))
237 #suffdec = (fp <= flin);
238 if fp <= flin:
239 suffdec = True
240 else:
241 suffdec = False
242
243 s = beta*s
244 backiter = backiter + 1
245 if (backiter > 32):
246 if verbose:
247 print 'Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'
248 xp = x.copy()
249 up = u.copy()
250 return xp,up,niter
251 #end
252 #end
253
254 # set up for next iteration
255 #x = xp; u = up; r = rp;
256 x = xp.copy()
257 u = up.copy()
258 r = rp.copy()
259 #fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
260 fu1 = fu1p.copy()
261 fu2 = fu2p.copy()
262 fe = fep
263 f = fp
264
265 #lambda2 = -(gradf'*[dx; du]);
266 lambda2 = -np.dot(gradf.T , np.concatenate((dx,du),0))
267 #stepsize = s*norm([dx; du]);
268 stepsize = s * np.linalg.norm(np.concatenate((dx,du),0))
269 niter = niter + 1
270 #done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
271 if lambda2/2.0 < newtontol or niter >= newtonmaxiter:
272 done = 1
273 else:
274 done = 0
275
276 #disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
277 if verbose:
278 print 'Newton iter = ',niter,', Functional = ',f,', Newton decrement = ',lambda2/2.0,', Stepsize = ',stepsize
279
280 if verbose:
281 if largescale:
282 print ' CG Res = ',cgres,', CG Iter = ',cgiter
283 else:
284 print ' H11p condition number = ',hcond
285 #end
286
287 #end
288 return xp,up,niter
289
290 def l1qec_logbarrier(x0, A, At, b, epsilon, Aexact, Atexact, bexact, lbtol=1e-3, mu=10, cgtol=1e-8, cgmaxiter=200, verbose=False):
291
292 # Check if epsilon > 0. If epsilon is 0, the algorithm fails. You should run the algo with equality constraint instead
293 if epsilon == 0:
294 raise l1qecInputValueError('Epsilon should be > 0!')
295
296 #largescale = isa(A,'function_handle');
297 if hasattr(A, '__call__'):
298 largescale = True
299 else:
300 largescale = False
301
302 # if (nargin < 6), lbtol = 1e-3; end
303 # if (nargin < 7), mu = 10; end
304 # if (nargin < 8), cgtol = 1e-8; end
305 # if (nargin < 9), cgmaxiter = 200; end
306 # Nic: added them as optional parameteres
307
308 newtontol = lbtol
309 newtonmaxiter = 50
310
311 #N = length(x0);
312 N = x0.size
313
314 # starting point --- make sure that it is feasible
315 if largescale:
316 if np.linalg.norm(A(x0) - b) > epsilon or np.linalg.norm( np.dot(Aexact,x0) - bexact ) > 1e-15:
317 if verbose:
318 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
319 #AAt = @(z) A(At(z));
320 AAt = lambda z: A(At(z))
321 # TODO: implement cgsolve
322 w,cgres,cgiter = cgsolve(AAt, b, cgtol, cgmaxiter, 0)
323 if (cgres > 1.0/2):
324 if verbose:
325 print 'A*At is ill-conditioned: cannot find starting point'
326 xp = x0.copy()
327 return xp
328 #end
329 x0 = At(w)
330 #end
331 else:
332 # Nic: add test for np.dot(Aexact,x0) - bexact ) > 1e-15
333 if np.linalg.norm( np.dot(A,x0) - b ) > epsilon or np.linalg.norm( np.dot(Aexact,x0) - bexact ) > 1e-15:
334 if verbose:
335 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
336
337 #Nic: stack A and Aexact, b and bexact, and use them instead of A and b
338 Abig = np.vstack((A,Aexact))
339 bbig = np.concatenate((b,bexact))
340 try:
341 w = scipy.linalg.solve(np.dot(Abig,Abig.T), bbig, sym_pos=True)
342 #w = np.linalg.solve(np.dot(A,A.T), b)
343 hcond = 1.0/np.linalg.cond(np.dot(Abig,Abig.T))
344 except scipy.linalg.LinAlgError:
345 if verbose:
346 print 'A*At is ill-conditioned: cannot find starting point'
347 xp = x0.copy()
348 return xp
349 if hcond < 1e-14:
350 if verbose:
351 print 'A*At is ill-conditioned: cannot find starting point'
352 xp = x0.copy()
353 return xp
354 x0 = np.dot(Abig.T, w)
355 # try:
356 # w = scipy.linalg.solve(np.dot(A,A.T), b, sym_pos=True)
357 # #w = np.linalg.solve(np.dot(A,A.T), b)
358 # hcond = 1.0/scipy.linalg.cond(np.dot(A,A.T))
359 # except scipy.linalg.LinAlgError:
360 # print 'A*At is ill-conditioned: cannot find starting point'
361 # xp = x0.copy()
362 # return xp
363 # if hcond < 1e-14:
364 # print 'A*At is ill-conditioned: cannot find starting point'
365 # xp = x0.copy()
366 # return xp
367 # #x0 = A'*w;
368 # x0 = np.dot(A.T, w)
369 #end
370 #end
371 x = x0.copy()
372 u = (0.95)*np.abs(x0) + (0.10)*np.abs(x0).max()
373
374 #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
375 if verbose:
376 print 'Original l1 norm = ',np.abs(x0).sum(),'original functional = ',u.sum()
377
378 # choose initial value of tau so that the duality gap after the first
379 # step will be about the origial norm
380 tau = max(((2*N+1.0)/np.abs(x0).sum()), 1)
381
382 lbiter = math.ceil((math.log(2*N+1)-math.log(lbtol)-math.log(tau))/math.log(mu))
383 #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
384 if verbose:
385 print 'Number of log barrier iterations = ',lbiter
386
387 totaliter = 0
388
389 # Added by Nic, to fix some crashing
390 if lbiter == 0:
391 xp = np.zeros(x0.size)
392 #end
393
394 #for ii = 1:lbiter
395 for ii in np.arange(lbiter):
396
397 xp,up,ntiter = l1qec_newton(x, u, A, At, b, epsilon, Aexact, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
398 totaliter = totaliter + ntiter
399
400 #disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
401 # ii, sum(abs(xp)), sum(up), tau, totaliter));
402 if verbose:
403 print 'Log barrier iter = ',ii,', l1 = ',np.abs(xp).sum(),', functional = ',up.sum(),', tau = ',tau,', total newton iter = ',totaliter
404 x = xp.copy()
405 u = up.copy()
406
407 tau = mu*tau
408
409 #end
410 return xp
411