Mercurial > hg > pycsalgos
comparison matlab/BP/l1qc_logbarrier.m @ 2:735a0e24575c
Organized folders: added tests, apps, matlab, docs folders. Added __init__.py files
author | nikcleju |
---|---|
date | Fri, 21 Oct 2011 13:53:49 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:2a2abf5092f8 | 2:735a0e24575c |
---|---|
1 % l1qc_logbarrier.m | |
2 % | |
3 % Solve quadratically constrained l1 minimization: | |
4 % min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon | |
5 % | |
6 % Reformulate as the second-order cone program | |
7 % min_{x,u} sum(u) s.t. x - u <= 0, | |
8 % -x - u <= 0, | |
9 % 1/2(||Ax-b||^2 - \epsilon^2) <= 0 | |
10 % and use a log barrier algorithm. | |
11 % | |
12 % Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) | |
13 % | |
14 % x0 - Nx1 vector, initial point. | |
15 % | |
16 % A - Either a handle to a function that takes a N vector and returns a K | |
17 % vector , or a KxN matrix. If A is a function handle, the algorithm | |
18 % operates in "largescale" mode, solving the Newton systems via the | |
19 % Conjugate Gradients algorithm. | |
20 % | |
21 % At - Handle to a function that takes a K vector and returns an N vector. | |
22 % If A is a KxN matrix, At is ignored. | |
23 % | |
24 % b - Kx1 vector of observations. | |
25 % | |
26 % epsilon - scalar, constraint relaxation parameter | |
27 % | |
28 % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. | |
29 % Also, the number of log barrier iterations is completely | |
30 % determined by lbtol. | |
31 % Default = 1e-3. | |
32 % | |
33 % mu - Factor by which to increase the barrier constant at each iteration. | |
34 % Default = 10. | |
35 % | |
36 % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. | |
37 % Default = 1e-8. | |
38 % | |
39 % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored | |
40 % if A is a matrix. | |
41 % Default = 200. | |
42 % | |
43 % Written by: Justin Romberg, Caltech | |
44 % Email: jrom@acm.caltech.edu | |
45 % Created: October 2005 | |
46 % | |
47 | |
48 function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) | |
49 | |
50 largescale = isa(A,'function_handle'); | |
51 | |
52 if (nargin < 6), lbtol = 1e-3; end | |
53 if (nargin < 7), mu = 10; end | |
54 if (nargin < 8), cgtol = 1e-8; end | |
55 if (nargin < 9), cgmaxiter = 200; end | |
56 | |
57 newtontol = lbtol; | |
58 newtonmaxiter = 50; | |
59 | |
60 N = length(x0); | |
61 | |
62 % starting point --- make sure that it is feasible | |
63 if (largescale) | |
64 if (norm(A(x0)-b) > epsilon) | |
65 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); | |
66 AAt = @(z) A(At(z)); | |
67 w = cgsolve(AAt, b, cgtol, cgmaxiter, 0); | |
68 if (cgres > 1/2) | |
69 disp('A*At is ill-conditioned: cannot find starting point'); | |
70 xp = x0; | |
71 return; | |
72 end | |
73 x0 = At(w); | |
74 end | |
75 else | |
76 if (norm(A*x0-b) > epsilon) | |
77 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); | |
78 opts.POSDEF = true; opts.SYM = true; | |
79 [w, hcond] = linsolve(A*A', b, opts); | |
80 if (hcond < 1e-14) | |
81 disp('A*At is ill-conditioned: cannot find starting point'); | |
82 xp = x0; | |
83 return; | |
84 end | |
85 x0 = A'*w; | |
86 end | |
87 end | |
88 x = x0; | |
89 u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); | |
90 | |
91 disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u))); | |
92 | |
93 % choose initial value of tau so that the duality gap after the first | |
94 % step will be about the origial norm | |
95 tau = max((2*N+1)/sum(abs(x0)), 1); | |
96 | |
97 lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu)); | |
98 disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); | |
99 | |
100 totaliter = 0; | |
101 | |
102 % Added by Nic | |
103 if lbiter == 0 | |
104 xp = zeros(size(x0)); | |
105 end | |
106 | |
107 for ii = 1:lbiter | |
108 | |
109 [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); | |
110 totaliter = totaliter + ntiter; | |
111 | |
112 disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... | |
113 ii, sum(abs(xp)), sum(up), tau, totaliter)); | |
114 | |
115 x = xp; | |
116 u = up; | |
117 | |
118 tau = mu*tau; | |
119 | |
120 end | |
121 |