comparison var/omp_app.py @ 55:020399d027b1

Changed directory structure - part 3
author nikcleju
date Wed, 14 Dec 2011 14:48:06 +0000
parents
children
comparison
equal deleted inserted replaced
54:527b0f6a9ffc 55:020399d027b1
1 """
2 #=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#
3 # Bob L. Sturm <bst@create.aau.dk> 20111018
4 # Department of Architecture, Design and Media Technology
5 # Aalborg University Copenhagen
6 # Lautrupvang 15, 2750 Ballerup, Denmark
7 #=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#
8 """
9
10 import numpy as np
11 from sklearn.utils import check_random_state
12 import time
13
14 from omp_sk_bugfix import orthogonal_mp
15 from omp_QR import greed_omp_qr
16 from omp_QR import omp_qr
17
18 """
19 Run a problem suite involving sparse vectors in
20 ambientDimension dimensional space, with a resolution
21 in the phase plane of numGradations x numGradations,
22 and at each indeterminacy and sparsity pair run
23 numTrials independent trials.
24
25 Outputs a text file denoting successes at each phase point.
26 For more on phase transitions, see:
27 D. L. Donoho and J. Tanner, "Precise undersampling theorems,"
28 Proc. IEEE, vol. 98, no. 6, pp. 913-924, June 2010.
29 """
30
31 def runProblemSuite(ambientDimension,numGradations,numTrials):
32
33 idx = np.arange(ambientDimension)
34 phaseDelta = np.linspace(0.05,1,numGradations)
35 phaseRho = np.linspace(0.05,1,numGradations)
36 success = np.zeros((numGradations, numGradations))
37
38 #Nic: init timers
39 t1all = 0
40 t2all = 0
41 t3all = 0
42
43 deltaCounter = 0
44 # delta is number of measurements/
45 for delta in phaseDelta[:17]:
46 rhoCounter = 0
47 for rho in phaseRho:
48 print(deltaCounter,rhoCounter)
49 numMeasurements = int(delta*ambientDimension)
50 sparsity = int(rho*numMeasurements)
51 # how do I set the following to be random each time?
52 generator = check_random_state(100)
53 # create unit norm dictionary
54 D = generator.randn(numMeasurements, ambientDimension)
55 D /= np.sqrt(np.sum((D ** 2), axis=0))
56 # compute Gramian (for efficiency)
57 DTD = np.dot(D.T,D)
58
59 successCounter = 0
60 trial = numTrials
61 while trial > 0:
62 # generate sparse signal with a minimum non-zero value
63 x = np.zeros((ambientDimension, 1))
64 idx2 = idx
65 generator.shuffle(idx2)
66 idx3 = idx2[:sparsity]
67 while np.min(np.abs(x[idx3,0])) < 1e-10 :
68 x[idx3,0] = generator.randn(sparsity)
69 # sense sparse signal
70 y = np.dot(D, x)
71
72 # Nic: Use sparsify OMP function (translated from Matlab)
73 ompopts = dict({'stopCrit':'M', 'stopTol':2*sparsity})
74 starttime = time.time() # start timer
75 x_r2, errs, times = greed_omp_qr(y.squeeze().copy(), D.copy(), D.shape[1], ompopts)
76 t2all = t2all + time.time() - starttime # stop timer
77 idx_r2 = np.nonzero(x_r2)[0]
78
79 # run to two times expected sparsity, or tolerance
80 # why? Often times, OMP can retrieve the correct solution
81 # when it is run for more than the expected sparsity
82 #x_r, idx_r = omp_qr(y,D,DTD,2*sparsity,1e-5)
83 # Nic: adjust tolerance to match with other function
84 starttime = time.time() # start timer
85 x_r, idx_r = omp_qr(y.copy(),D.copy(),DTD.copy(),2*sparsity,numMeasurements*1e-14/np.vdot(y,y))
86 t1all = t1all + time.time() - starttime # stop timer
87
88 # Nic: test sklearn omp
89 starttime = time.time() # start timer
90 x_r3 = orthogonal_mp(D.copy(), y.copy(), n_nonzero_coefs=2*sparsity, tol=numMeasurements*1e-14, precompute_gram=False, copy_X=True)
91 idx_r3 = np.nonzero(x_r3)[0]
92 t3all = t3all + time.time() - starttime # stop timer
93
94 # Nic: compare results
95 print 'diff1 = ',np.linalg.norm(x_r.squeeze() - x_r2.squeeze())
96 print 'diff2 = ',np.linalg.norm(x_r.squeeze() - x_r3.squeeze())
97 print 'diff3 = ',np.linalg.norm(x_r2.squeeze() - x_r3.squeeze())
98 print "Bob's total time = ", t1all
99 print "Nic's total time = ", t2all
100 print "Skl's total time = ", t3all
101 if np.linalg.norm(x_r.squeeze() - x_r2.squeeze()) > 1e-10 or \
102 np.linalg.norm(x_r.squeeze() - x_r3.squeeze()) > 1e-10 or \
103 np.linalg.norm(x_r2.squeeze() - x_r3.squeeze()) > 1e-10:
104 print "STOP: Different results"
105 print "Bob's residual: ||y - D x_r ||_2 = ",np.linalg.norm(y.squeeze() - np.dot(D,x_r).squeeze())
106 print "Nic's residual: ||y - D x_r ||_2 = ",np.linalg.norm(y.squeeze() - np.dot(D,x_r2).squeeze())
107 print "Skl's residual: ||y - D x_r ||_2 = ",np.linalg.norm(y.squeeze() - np.dot(D,x_r3).squeeze())
108 raise ValueError("Different results")
109
110 # debais to remove small entries
111 for nn in idx_r:
112 if abs(x_r[nn]) < 1e-10:
113 x_r[nn] = 0
114
115 # exact recovery condition using support
116 #if sorted(np.flatnonzero(x_r)) == sorted(np.flatnonzero(x)):
117 # successCounter += 1
118 # exact recovery condition using error in solution
119 error = x - x_r
120 """ the following is the exact recovery condition in: A. Maleki
121 and D. L. Donoho, "Optimally tuned iterative reconstruction
122 algorithms for compressed sensing," IEEE J. Selected Topics
123 in Signal Process., vol. 4, pp. 330-341, Apr. 2010. """
124 if np.vdot(error,error) < np.vdot(x,x)*1e-4:
125 successCounter += 1
126 trial -= 1
127
128 success[rhoCounter,deltaCounter] = successCounter
129 if successCounter == 0:
130 break
131
132 rhoCounter += 1
133 #np.savetxt('test.txt',success,fmt='#2.1d',delimiter=',')
134 deltaCounter += 1
135
136 if __name__ == '__main__':
137 print ('Running problem suite')
138 ambientDimension = 400
139 numGradations = 30
140 numTrials = 1
141
142 #import cProfile
143 #cProfile.run('runProblemSuite(ambientDimension,numGradations,numTrials)','profres')
144 runProblemSuite(ambientDimension,numGradations,numTrials)
145 print "Done"
146
147 #import pstats
148 #p = pstats.Stats('D:\Nic\Dev2\profres')
149 #p.sort_stats('cumulative').print_stats(10)