nikcleju@27
|
1 # -*- coding: utf-8 -*-
|
nikcleju@27
|
2 """
|
nikcleju@27
|
3 Created on Sat Nov 05 18:08:40 2011
|
nikcleju@27
|
4
|
nikcleju@27
|
5 @author: Nic
|
nikcleju@27
|
6 """
|
nikcleju@27
|
7
|
nikcleju@27
|
8 import numpy as np
|
nikcleju@27
|
9 import scipy.io
|
nikcleju@27
|
10 import math
|
nikcleju@27
|
11 from multiprocessing import Pool
|
nikcleju@27
|
12 doplot = True
|
nikcleju@27
|
13 try:
|
nikcleju@27
|
14 import matplotlib.pyplot as plt
|
nikcleju@27
|
15 except:
|
nikcleju@27
|
16 doplot = False
|
nikcleju@27
|
17 if doplot:
|
nikcleju@27
|
18 import matplotlib.cm as cm
|
nikcleju@27
|
19 import pyCSalgos
|
nikcleju@27
|
20 import pyCSalgos.GAP.GAP
|
nikcleju@27
|
21 import pyCSalgos.SL0.SL0_approx
|
nikcleju@27
|
22
|
nikcleju@27
|
23 # Define functions that prepare arguments for each algorithm call
|
nikcleju@27
|
24 def run_gap(y,M,Omega,epsilon):
|
nikcleju@27
|
25 gapparams = {"num_iteration" : 1000,\
|
nikcleju@27
|
26 "greedy_level" : 0.9,\
|
nikcleju@27
|
27 "stopping_coefficient_size" : 1e-4,\
|
nikcleju@27
|
28 "l2solver" : 'pseudoinverse',\
|
nikcleju@27
|
29 "noise_level": epsilon}
|
nikcleju@27
|
30 return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,np.zeros(Omega.shape[1]))[0]
|
nikcleju@27
|
31
|
nikcleju@27
|
32 def run_sl0(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@27
|
33
|
nikcleju@27
|
34 N,n = Omega.shape
|
nikcleju@27
|
35 #D = np.linalg.pinv(Omega)
|
nikcleju@27
|
36 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@27
|
37 aggDupper = np.dot(M,D)
|
nikcleju@27
|
38 aggDlower = Vt[-(N-n):,:]
|
nikcleju@27
|
39 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@27
|
40 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@27
|
41
|
nikcleju@27
|
42 sigmamin = 0.001
|
nikcleju@27
|
43 sigma_decrease_factor = 0.5
|
nikcleju@27
|
44 mu_0 = 2
|
nikcleju@27
|
45 L = 10
|
nikcleju@27
|
46 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L)
|
nikcleju@27
|
47
|
nikcleju@27
|
48 def run_bp(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@27
|
49
|
nikcleju@27
|
50 N,n = Omega.shape
|
nikcleju@27
|
51 #D = np.linalg.pinv(Omega)
|
nikcleju@27
|
52 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@27
|
53 aggDupper = np.dot(M,D)
|
nikcleju@27
|
54 aggDlower = Vt[-(N-n):,:]
|
nikcleju@27
|
55 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@27
|
56 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@27
|
57
|
nikcleju@27
|
58 sigmamin = 0.001
|
nikcleju@27
|
59 sigma_decrease_factor = 0.5
|
nikcleju@27
|
60 mu_0 = 2
|
nikcleju@27
|
61 L = 10
|
nikcleju@27
|
62 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L)
|
nikcleju@27
|
63
|
nikcleju@27
|
64
|
nikcleju@27
|
65 # Define tuples (algorithm setup function, algorithm function, name)
|
nikcleju@27
|
66 gap = (run_gap, 'GAP')
|
nikcleju@27
|
67 sl0 = (run_sl0, 'SL0_approx')
|
nikcleju@27
|
68
|
nikcleju@27
|
69 # Define which algorithms to run
|
nikcleju@27
|
70 # 1. Algorithms not depending on lambda
|
nikcleju@27
|
71 algosN = gap, # tuple
|
nikcleju@27
|
72 # 2. Algorithms depending on lambda (our ABS approach)
|
nikcleju@27
|
73 algosL = sl0, # tuple
|
nikcleju@27
|
74
|
nikcleju@27
|
75 def mainrun():
|
nikcleju@27
|
76
|
nikcleju@27
|
77 nalgosN = len(algosN)
|
nikcleju@27
|
78 nalgosL = len(algosL)
|
nikcleju@27
|
79
|
nikcleju@27
|
80 #Set up experiment parameters
|
nikcleju@27
|
81 d = 50.0;
|
nikcleju@27
|
82 sigma = 2.0
|
nikcleju@27
|
83 #deltas = np.arange(0.05,1.,0.05)
|
nikcleju@27
|
84 #rhos = np.arange(0.05,1.,0.05)
|
nikcleju@27
|
85 deltas = np.array([0.05, 0.45, 0.95])
|
nikcleju@27
|
86 rhos = np.array([0.05, 0.45, 0.95])
|
nikcleju@27
|
87 #deltas = np.array([0.05])
|
nikcleju@27
|
88 #rhos = np.array([0.05])
|
nikcleju@27
|
89 #delta = 0.8;
|
nikcleju@27
|
90 #rho = 0.15;
|
nikcleju@27
|
91 numvects = 100; # Number of vectors to generate
|
nikcleju@27
|
92 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy
|
nikcleju@27
|
93 # Values for lambda
|
nikcleju@27
|
94 #lambdas = [0 10.^linspace(-5, 4, 10)];
|
nikcleju@27
|
95 #lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10)))
|
nikcleju@27
|
96 lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000])
|
nikcleju@27
|
97
|
nikcleju@27
|
98 meanmatrix = dict()
|
nikcleju@27
|
99 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@27
|
100 meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size))
|
nikcleju@27
|
101 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@27
|
102 meanmatrix[algo[1]] = np.zeros((lambdas.size, rhos.size, deltas.size))
|
nikcleju@27
|
103
|
nikcleju@27
|
104 jobparams = []
|
nikcleju@27
|
105 for idelta,delta in zip(np.arange(deltas.size),deltas):
|
nikcleju@27
|
106 for irho,rho in zip(np.arange(rhos.size),rhos):
|
nikcleju@27
|
107
|
nikcleju@27
|
108 # Generate data and operator
|
nikcleju@27
|
109 Omega,x0,y,M,realnoise = genData(d,sigma,delta,rho,numvects,SNRdb)
|
nikcleju@27
|
110
|
nikcleju@27
|
111 # Run algorithms
|
nikcleju@27
|
112 print "***** delta = ",delta," rho = ",rho
|
nikcleju@27
|
113 #mrelerrN,mrelerrL = runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0)
|
nikcleju@27
|
114 jobparams.append((algosN,algosL, Omega,y,lambdas,realnoise,M,x0))
|
nikcleju@27
|
115
|
nikcleju@27
|
116 pool = Pool(4)
|
nikcleju@27
|
117 jobresults = pool.map(runoncetuple,jobparams)
|
nikcleju@27
|
118
|
nikcleju@27
|
119 idx = 0
|
nikcleju@27
|
120 for idelta,delta in zip(np.arange(deltas.size),deltas):
|
nikcleju@27
|
121 for irho,rho in zip(np.arange(rhos.size),rhos):
|
nikcleju@27
|
122 mrelerrN,mrelerrL = jobresults[idx]
|
nikcleju@27
|
123 idx = idx+1
|
nikcleju@27
|
124 for algotuple in algosN:
|
nikcleju@27
|
125 meanmatrix[algotuple[1]][irho,idelta] = 1 - mrelerrN[algotuple[1]]
|
nikcleju@27
|
126 if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]):
|
nikcleju@27
|
127 meanmatrix[algotuple[1]][irho,idelta] = 0
|
nikcleju@27
|
128 for algotuple in algosL:
|
nikcleju@27
|
129 for ilbd in np.arange(lambdas.size):
|
nikcleju@27
|
130 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 1 - mrelerrL[algotuple[1]][ilbd]
|
nikcleju@27
|
131 if meanmatrix[algotuple[1]][ilbd,irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][ilbd,irho,idelta]):
|
nikcleju@27
|
132 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 0
|
nikcleju@27
|
133
|
nikcleju@27
|
134 # # Prepare matrices to show
|
nikcleju@27
|
135 # showmats = dict()
|
nikcleju@27
|
136 # for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@27
|
137 # showmats[algo[1]] = np.zeros(rhos.size, deltas.size)
|
nikcleju@27
|
138 # for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@27
|
139 # showmats[algo[1]] = np.zeros(lambdas.size, rhos.size, deltas.size)
|
nikcleju@27
|
140
|
nikcleju@27
|
141 # Save
|
nikcleju@27
|
142 tosave = dict()
|
nikcleju@27
|
143 tosave['meanmatrix'] = meanmatrix
|
nikcleju@27
|
144 tosave['d'] = d
|
nikcleju@27
|
145 tosave['sigma'] = sigma
|
nikcleju@27
|
146 tosave['deltas'] = deltas
|
nikcleju@27
|
147 tosave['rhos'] = rhos
|
nikcleju@27
|
148 tosave['numvects'] = numvects
|
nikcleju@27
|
149 tosave['SNRdb'] = SNRdb
|
nikcleju@27
|
150 tosave['lambdas'] = lambdas
|
nikcleju@27
|
151 try:
|
nikcleju@27
|
152 scipy.io.savemat('ABSapprox.mat',tosave)
|
nikcleju@27
|
153 except TypeError:
|
nikcleju@27
|
154 print "Oops, Type Error"
|
nikcleju@27
|
155 raise
|
nikcleju@27
|
156 # Show
|
nikcleju@27
|
157 if doplot:
|
nikcleju@27
|
158 for algotuple in algosN:
|
nikcleju@27
|
159 plt.figure()
|
nikcleju@27
|
160 plt.imshow(meanmatrix[algotuple[1]], cmap=cm.gray, interpolation='nearest',origin='lower')
|
nikcleju@27
|
161 for algotuple in algosL:
|
nikcleju@27
|
162 for ilbd in np.arange(lambdas.size):
|
nikcleju@27
|
163 plt.figure()
|
nikcleju@27
|
164 plt.imshow(meanmatrix[algotuple[1]][ilbd], cmap=cm.gray, interpolation='nearest',origin='lower')
|
nikcleju@27
|
165 plt.show()
|
nikcleju@27
|
166 print "Finished."
|
nikcleju@27
|
167
|
nikcleju@27
|
168 def genData(d,sigma,delta,rho,numvects,SNRdb):
|
nikcleju@27
|
169
|
nikcleju@27
|
170 # Process parameters
|
nikcleju@27
|
171 noiselevel = 1.0 / (10.0**(SNRdb/10.0));
|
nikcleju@27
|
172 p = round(sigma*d);
|
nikcleju@27
|
173 m = round(delta*d);
|
nikcleju@27
|
174 l = round(d - rho*m);
|
nikcleju@27
|
175
|
nikcleju@27
|
176 # Generate Omega and data based on parameters
|
nikcleju@27
|
177 Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p);
|
nikcleju@27
|
178 # Optionally make Omega more coherent
|
nikcleju@27
|
179 U,S,Vt = np.linalg.svd(Omega);
|
nikcleju@27
|
180 Sdnew = S * (1+np.arange(S.size)) # Make D coherent, not Omega!
|
nikcleju@27
|
181 Snew = np.vstack((np.diag(Sdnew), np.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1]))))
|
nikcleju@27
|
182 Omega = np.dot(U , np.dot(Snew,Vt))
|
nikcleju@27
|
183
|
nikcleju@27
|
184 # Generate data
|
nikcleju@27
|
185 x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0');
|
nikcleju@27
|
186
|
nikcleju@27
|
187 return Omega,x0,y,M,realnoise
|
nikcleju@27
|
188
|
nikcleju@27
|
189 def runoncetuple(t):
|
nikcleju@27
|
190 return runonce(*t)
|
nikcleju@27
|
191
|
nikcleju@27
|
192 def runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0):
|
nikcleju@27
|
193
|
nikcleju@27
|
194 d = Omega.shape[1]
|
nikcleju@27
|
195
|
nikcleju@27
|
196 nalgosN = len(algosN)
|
nikcleju@27
|
197 nalgosL = len(algosL)
|
nikcleju@27
|
198
|
nikcleju@27
|
199 xrec = dict()
|
nikcleju@27
|
200 err = dict()
|
nikcleju@27
|
201 relerr = dict()
|
nikcleju@27
|
202
|
nikcleju@27
|
203 # Prepare storage variables for algorithms non-Lambda
|
nikcleju@27
|
204 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@27
|
205 xrec[algo[1]] = np.zeros((d, y.shape[1]))
|
nikcleju@27
|
206 err[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@27
|
207 relerr[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@27
|
208 # Prepare storage variables for algorithms with Lambda
|
nikcleju@27
|
209 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@27
|
210 xrec[algo[1]] = np.zeros((lambdas.size, d, y.shape[1]))
|
nikcleju@27
|
211 err[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@27
|
212 relerr[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@27
|
213
|
nikcleju@27
|
214 # Run algorithms non-Lambda
|
nikcleju@27
|
215 for iy in np.arange(y.shape[1]):
|
nikcleju@27
|
216 for algofunc,strname in algosN:
|
nikcleju@27
|
217 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@27
|
218 xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega,epsilon)
|
nikcleju@27
|
219 err[strname][iy] = np.linalg.norm(x0[:,iy] - xrec[strname][:,iy])
|
nikcleju@27
|
220 relerr[strname][iy] = err[strname][iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@27
|
221 for algotuple in algosN:
|
nikcleju@27
|
222 print algotuple[1],' : avg relative error = ',np.mean(relerr[strname])
|
nikcleju@27
|
223
|
nikcleju@27
|
224 # Run algorithms with Lambda
|
nikcleju@27
|
225 for ilbd,lbd in zip(np.arange(lambdas.size),lambdas):
|
nikcleju@27
|
226 for iy in np.arange(y.shape[1]):
|
nikcleju@27
|
227 D = np.linalg.pinv(Omega)
|
nikcleju@27
|
228 U,S,Vt = np.linalg.svd(D)
|
nikcleju@27
|
229 for algofunc,strname in algosL:
|
nikcleju@27
|
230 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@27
|
231 gamma = algofunc(y[:,iy],M,Omega,D,U,S,Vt,epsilon,lbd)
|
nikcleju@27
|
232 xrec[strname][ilbd,:,iy] = np.dot(D,gamma)
|
nikcleju@27
|
233 err[strname][ilbd,iy] = np.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy])
|
nikcleju@27
|
234 relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@27
|
235 print 'Lambda = ',lbd,' :'
|
nikcleju@27
|
236 for algotuple in algosL:
|
nikcleju@27
|
237 print ' ',algotuple[1],' : avg relative error = ',np.mean(relerr[strname][ilbd,:])
|
nikcleju@27
|
238
|
nikcleju@27
|
239 # Prepare results
|
nikcleju@27
|
240 mrelerrN = dict()
|
nikcleju@27
|
241 for algotuple in algosN:
|
nikcleju@27
|
242 mrelerrN[algotuple[1]] = np.mean(relerr[algotuple[1]])
|
nikcleju@27
|
243 mrelerrL = dict()
|
nikcleju@27
|
244 for algotuple in algosL:
|
nikcleju@27
|
245 mrelerrL[algotuple[1]] = np.mean(relerr[algotuple[1]],1)
|
nikcleju@27
|
246
|
nikcleju@27
|
247 return mrelerrN,mrelerrL
|
nikcleju@27
|
248
|
nikcleju@27
|
249 # Script main
|
nikcleju@27
|
250 if __name__ == "__main__":
|
nikcleju@27
|
251 #import cProfile
|
nikcleju@27
|
252 #cProfile.run('mainrun()', 'profile')
|
nikcleju@27
|
253
|
nikcleju@27
|
254 mainrun()
|