annotate pyCSalgos/GAP/GAP.py @ 29:bc2a96a03b0a

2011 nov 10. Rewrote a single ABSapprox file, reorganized functions
author nikcleju
date Thu, 10 Nov 2011 18:49:38 +0000
parents 1a88766113a9
children 4f3bc35195ce
rev   line source
nikcleju@21 1 # -*- coding: utf-8 -*-
nikcleju@21 2 """
nikcleju@21 3 Created on Thu Oct 13 14:05:22 2011
nikcleju@21 4
nikcleju@21 5 @author: ncleju
nikcleju@21 6 """
nikcleju@21 7
nikcleju@21 8 #from numpy import *
nikcleju@21 9 #from scipy import *
nikcleju@27 10 import numpy
nikcleju@27 11 import numpy.linalg
nikcleju@21 12 import scipy as sp
nikcleju@27 13 #import scipy.stats #from scipy import stats
nikcleju@27 14 #import scipy.linalg #from scipy import lnalg
nikcleju@21 15 import math
nikcleju@21 16
nikcleju@21 17 from numpy.random import RandomState
nikcleju@21 18 rng = RandomState()
nikcleju@21 19
nikcleju@21 20 def Generate_Analysis_Operator(d, p):
nikcleju@21 21 # generate random tight frame with equal column norms
nikcleju@21 22 if p == d:
nikcleju@21 23 T = rng.randn(d,d);
nikcleju@27 24 [Omega, discard] = numpy.qr(T);
nikcleju@21 25 else:
nikcleju@21 26 Omega = rng.randn(p, d);
nikcleju@27 27 T = numpy.zeros((p, d));
nikcleju@21 28 tol = 1e-8;
nikcleju@21 29 max_j = 200;
nikcleju@21 30 j = 1;
nikcleju@27 31 while (sum(sum(abs(T-Omega))) > numpy.dot(tol,numpy.dot(p,d)) and j < max_j):
nikcleju@21 32 j = j + 1;
nikcleju@21 33 T = Omega;
nikcleju@27 34 [U, S, Vh] = numpy.linalg.svd(Omega);
nikcleju@21 35 V = Vh.T
nikcleju@21 36 #Omega = U * [eye(d); zeros(p-d,d)] * V';
nikcleju@27 37 Omega2 = numpy.dot(numpy.dot(U, numpy.concatenate((numpy.eye(d), numpy.zeros((p-d,d))))), V.transpose())
nikcleju@21 38 #Omega = diag(1./sqrt(diag(Omega*Omega')))*Omega;
nikcleju@27 39 Omega = numpy.dot(numpy.diag(1.0 / numpy.sqrt(numpy.diag(numpy.dot(Omega2,Omega2.transpose())))), Omega2)
nikcleju@21 40 #end
nikcleju@21 41 ##disp(j);
nikcleju@21 42 #end
nikcleju@21 43 return Omega
nikcleju@21 44
nikcleju@21 45
nikcleju@21 46 def Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr):
nikcleju@21 47 #function [x0,y,M,LambdaMat] = Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr)
nikcleju@21 48
nikcleju@21 49 # Building an analysis problem, which includes the ingredients:
nikcleju@21 50 # - Omega - the analysis operator of size p*d
nikcleju@21 51 # - M is anunderdetermined measurement matrix of size m*d (m<d)
nikcleju@21 52 # - x0 is a vector of length d that satisfies ||Omega*x0||=p-k
nikcleju@21 53 # - Lambda is the true location of these k zeros in Omega*x0
nikcleju@21 54 # - a measurement vector y0=Mx0 is computed
nikcleju@21 55 # - noise contaminated measurement vector y is obtained by
nikcleju@21 56 # y = y0 + n where n is an additive gaussian noise with norm(n,2)/norm(y0,2) = noiselevel
nikcleju@21 57 # Added by Nic:
nikcleju@21 58 # - Omega = analysis operator
nikcleju@21 59 # - normstr: if 'l0', generate l0 sparse vector (unchanged). If 'l1',
nikcleju@21 60 # generate a vector of Laplacian random variables (gamma) and
nikcleju@21 61 # pseudoinvert to find x
nikcleju@21 62
nikcleju@21 63 # Omega is known as input parameter
nikcleju@21 64 #Omega=Generate_Analysis_Operator(d, p);
nikcleju@21 65 # Omega = randn(p,d);
nikcleju@21 66 # for i = 1:size(Omega,1)
nikcleju@21 67 # Omega(i,:) = Omega(i,:) / norm(Omega(i,:));
nikcleju@21 68 # end
nikcleju@21 69
nikcleju@21 70 #Init
nikcleju@27 71 LambdaMat = numpy.zeros((k,numvectors))
nikcleju@27 72 x0 = numpy.zeros((d,numvectors))
nikcleju@27 73 y = numpy.zeros((m,numvectors))
nikcleju@27 74 realnoise = numpy.zeros((m,numvectors))
nikcleju@21 75
nikcleju@21 76 M = rng.randn(m,d);
nikcleju@21 77
nikcleju@21 78 #for i=1:numvectors
nikcleju@21 79 for i in range(0,numvectors):
nikcleju@21 80
nikcleju@21 81 # Generate signals
nikcleju@21 82 #if strcmp(normstr,'l0')
nikcleju@21 83 if normstr == 'l0':
nikcleju@21 84 # Unchanged
nikcleju@21 85
nikcleju@21 86 #Lambda=randperm(p);
nikcleju@21 87 Lambda = rng.permutation(int(p));
nikcleju@27 88 Lambda = numpy.sort(Lambda[0:k]);
nikcleju@21 89 LambdaMat[:,i] = Lambda; # store for output
nikcleju@21 90
nikcleju@21 91 # The signal is drawn at random from the null-space defined by the rows
nikcleju@21 92 # of the matreix Omega(Lambda,:)
nikcleju@27 93 [U,D,Vh] = numpy.linalg.svd(Omega[Lambda,:]);
nikcleju@21 94 V = Vh.T
nikcleju@21 95 NullSpace = V[:,k:];
nikcleju@27 96 #print numpy.dot(NullSpace, rng.randn(d-k,1)).shape
nikcleju@21 97 #print x0[:,i].shape
nikcleju@27 98 x0[:,i] = numpy.squeeze(numpy.dot(NullSpace, rng.randn(d-k,1)));
nikcleju@21 99 # Nic: add orthogonality noise
nikcleju@21 100 # orthonoiseSNRdb = 6;
nikcleju@21 101 # n = randn(p,1);
nikcleju@21 102 # #x0(:,i) = x0(:,i) + n / norm(n)^2 * norm(x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
nikcleju@21 103 # n = n / norm(n)^2 * norm(Omega * x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
nikcleju@21 104 # x0(:,i) = pinv(Omega) * (Omega * x0(:,i) + n);
nikcleju@21 105
nikcleju@21 106 #elseif strcmp(normstr, 'l1')
nikcleju@21 107 elif normstr == 'l1':
nikcleju@21 108 print('Nic says: not implemented yet')
nikcleju@21 109 raise Exception('Nic says: not implemented yet')
nikcleju@21 110 #gamma = laprnd(p,1,0,1);
nikcleju@21 111 #x0(:,i) = Omega \ gamma;
nikcleju@21 112 else:
nikcleju@21 113 #error('normstr must be l0 or l1!');
nikcleju@21 114 print('Nic says: not implemented yet')
nikcleju@21 115 raise Exception('Nic says: not implemented yet')
nikcleju@21 116 #end
nikcleju@21 117
nikcleju@21 118 # Acquire measurements
nikcleju@27 119 y[:,i] = numpy.dot(M, x0[:,i])
nikcleju@21 120
nikcleju@21 121 # Add noise
nikcleju@27 122 t_norm = numpy.linalg.norm(y[:,i],2);
nikcleju@27 123 n = numpy.squeeze(rng.randn(m, 1));
nikcleju@27 124 y[:,i] = y[:,i] + noiselevel * t_norm * n / numpy.linalg.norm(n, 2);
nikcleju@27 125 realnoise[:,i] = noiselevel * t_norm * n / numpy.linalg.norm(n, 2)
nikcleju@21 126 #end
nikcleju@21 127
nikcleju@21 128 return x0,y,M,LambdaMat,realnoise
nikcleju@21 129
nikcleju@21 130 #####################
nikcleju@21 131
nikcleju@21 132 #function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params)
nikcleju@21 133 def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params):
nikcleju@21 134
nikcleju@21 135 #
nikcleju@21 136 # This function aims to compute
nikcleju@21 137 # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon.
nikcleju@21 138 # arepr is the analysis representation corresponding to Lambdahat, i.e.,
nikcleju@21 139 # arepr = Omega(Lambdahat, :) * xhat.
nikcleju@21 140 # The function also returns the lagrange multiplier in the process used to compute xhat.
nikcleju@21 141 #
nikcleju@21 142 # Inputs:
nikcleju@21 143 # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise.
nikcleju@21 144 # M : Measurement matrix
nikcleju@21 145 # MH : M', the conjugate transpose of M
nikcleju@21 146 # Omega : analysis operator
nikcleju@21 147 # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator.
nikcleju@21 148 # Lambdahat : an index set indicating some rows of Omega.
nikcleju@21 149 # xinit : initial estimate that will be used for the conjugate gradient algorithm.
nikcleju@21 150 # ilagmult : initial lagrange multiplier to be used in
nikcleju@21 151 # params : parameters
nikcleju@21 152 # params.noise_level : this corresponds to epsilon above.
nikcleju@21 153 # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method.
nikcleju@21 154 # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method
nikcleju@21 155 # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used.
nikcleju@21 156 #
nikcleju@21 157
nikcleju@21 158 #d = length(xinit)
nikcleju@21 159 d = xinit.size
nikcleju@21 160 lagmultmax = 1e5;
nikcleju@21 161 lagmultmin = 1e-4;
nikcleju@21 162 lagmultfactor = 2.0;
nikcleju@21 163 accuracy_adjustment_exponent = 4/5.;
nikcleju@21 164 lagmult = max(min(ilagmult, lagmultmax), lagmultmin);
nikcleju@21 165 was_infeasible = 0;
nikcleju@21 166 was_feasible = 0;
nikcleju@21 167
nikcleju@21 168 #######################################################################
nikcleju@21 169 ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.)
nikcleju@21 170 #######################################################################
nikcleju@21 171 #if strcmp(params.l2solver, 'pseudoinverse')
nikcleju@21 172 if params['l2solver'] == 'pseudoinverse':
nikcleju@21 173 #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double')
nikcleju@21 174 if M.dtype == 'float64' and Omega.dtype == 'double':
nikcleju@21 175 while True:
nikcleju@21 176 alpha = math.sqrt(lagmult);
nikcleju@27 177 xhat = numpy.linalg.lstsq(numpy.concatenate((M, alpha*Omega[Lambdahat,:])), numpy.concatenate((y, numpy.zeros(Lambdahat.size))))[0]
nikcleju@27 178 temp = numpy.linalg.norm(y - numpy.dot(M,xhat), 2);
nikcleju@21 179 #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]);
nikcleju@21 180 if temp <= params['noise_level']:
nikcleju@21 181 was_feasible = True;
nikcleju@21 182 if was_infeasible:
nikcleju@21 183 break;
nikcleju@21 184 else:
nikcleju@21 185 lagmult = lagmult*lagmultfactor;
nikcleju@21 186 elif temp > params['noise_level']:
nikcleju@21 187 was_infeasible = True;
nikcleju@21 188 if was_feasible:
nikcleju@21 189 xhat = xprev.copy();
nikcleju@21 190 break;
nikcleju@21 191 lagmult = lagmult/lagmultfactor;
nikcleju@21 192 if lagmult < lagmultmin or lagmult > lagmultmax:
nikcleju@21 193 break;
nikcleju@21 194 xprev = xhat.copy();
nikcleju@27 195 arepr = numpy.dot(Omega[Lambdahat, :], xhat);
nikcleju@21 196 return xhat,arepr,lagmult;
nikcleju@21 197
nikcleju@21 198
nikcleju@21 199 ########################################################################
nikcleju@21 200 ## Computation using conjugate gradient method.
nikcleju@21 201 ########################################################################
nikcleju@21 202 #if strcmp(class(MH),'function_handle')
nikcleju@21 203 if hasattr(MH, '__call__'):
nikcleju@21 204 b = MH(y);
nikcleju@21 205 else:
nikcleju@27 206 b = numpy.dot(MH, y);
nikcleju@21 207
nikcleju@27 208 norm_b = numpy.linalg.norm(b, 2);
nikcleju@21 209 xhat = xinit.copy();
nikcleju@21 210 xprev = xinit.copy();
nikcleju@21 211 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
nikcleju@21 212 direction = -residual;
nikcleju@21 213 iter = 0;
nikcleju@21 214
nikcleju@21 215 while iter < params.max_inner_iteration:
nikcleju@21 216 iter = iter + 1;
nikcleju@27 217 alpha = numpy.linalg.norm(residual,2)**2 / numpy.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult));
nikcleju@21 218 xhat = xhat + alpha*direction;
nikcleju@21 219 prev_residual = residual.copy();
nikcleju@21 220 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
nikcleju@27 221 beta = numpy.linalg.norm(residual,2)**2 / numpy.linalg.norm(prev_residual,2)**2;
nikcleju@21 222 direction = -residual + beta*direction;
nikcleju@21 223
nikcleju@27 224 if numpy.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']:
nikcleju@21 225 #if strcmp(class(M), 'function_handle')
nikcleju@21 226 if hasattr(M, '__call__'):
nikcleju@27 227 temp = numpy.linalg.norm(y-M(xhat), 2);
nikcleju@21 228 else:
nikcleju@27 229 temp = numpy.linalg.norm(y-numpy.dot(M,xhat), 2);
nikcleju@21 230
nikcleju@21 231 #if strcmp(class(Omega), 'function_handle')
nikcleju@21 232 if hasattr(Omega, '__call__'):
nikcleju@21 233 u = Omega(xhat);
nikcleju@27 234 u = math.sqrt(lagmult)*numpy.linalg.norm(u(Lambdahat), 2);
nikcleju@21 235 else:
nikcleju@27 236 u = math.sqrt(lagmult)*numpy.linalg.norm(Omega[Lambdahat,:]*xhat, 2);
nikcleju@21 237
nikcleju@21 238
nikcleju@21 239 #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]);
nikcleju@21 240
nikcleju@21 241 if temp <= params['noise_level']:
nikcleju@21 242 was_feasible = True;
nikcleju@21 243 if was_infeasible:
nikcleju@21 244 break;
nikcleju@21 245 else:
nikcleju@21 246 lagmult = lagmultfactor*lagmult;
nikcleju@21 247 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
nikcleju@21 248 direction = -residual;
nikcleju@21 249 iter = 0;
nikcleju@21 250 elif temp > params['noise_level']:
nikcleju@21 251 lagmult = lagmult/lagmultfactor;
nikcleju@21 252 if was_feasible:
nikcleju@21 253 xhat = xprev.copy();
nikcleju@21 254 break;
nikcleju@21 255 was_infeasible = True;
nikcleju@21 256 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
nikcleju@21 257 direction = -residual;
nikcleju@21 258 iter = 0;
nikcleju@21 259 if lagmult > lagmultmax or lagmult < lagmultmin:
nikcleju@21 260 break;
nikcleju@21 261 xprev = xhat.copy();
nikcleju@21 262 #elseif norm(xprev-xhat)/norm(xhat) < 1e-2
nikcleju@21 263 # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]);
nikcleju@21 264 # if strcmp(class(M), 'function_handle')
nikcleju@21 265 # temp = norm(y-M(xhat), 2);
nikcleju@21 266 # else
nikcleju@21 267 # temp = norm(y-M*xhat, 2);
nikcleju@21 268 # end
nikcleju@21 269 #
nikcleju@21 270 # if temp > 1.2*params.noise_level
nikcleju@21 271 # was_infeasible = 1;
nikcleju@21 272 # lagmult = lagmult/lagmultfactor;
nikcleju@21 273 # xprev = xhat;
nikcleju@21 274 # end
nikcleju@21 275
nikcleju@21 276 #disp(['fidelity_error=', num2str(temp)]);
nikcleju@21 277 print 'fidelity_error=',temp
nikcleju@21 278 #if iter == params['max_inner_iteration']:
nikcleju@21 279 #disp('max_inner_iteration reached. l2_accuracy not achieved.');
nikcleju@21 280
nikcleju@21 281 ##
nikcleju@21 282 # Compute analysis representation for xhat
nikcleju@21 283 ##
nikcleju@21 284 #if strcmp(class(Omega),'function_handle')
nikcleju@21 285 if hasattr(Omega, '__call__'):
nikcleju@21 286 temp = Omega(xhat);
nikcleju@21 287 arepr = temp(Lambdahat);
nikcleju@21 288 else: ## here Omega is assumed to be a matrix
nikcleju@27 289 arepr = numpy.dot(Omega[Lambdahat, :], xhat);
nikcleju@21 290
nikcleju@21 291 return xhat,arepr,lagmult
nikcleju@21 292
nikcleju@21 293
nikcleju@21 294 ##
nikcleju@21 295 # This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x.
nikcleju@21 296 ##
nikcleju@21 297 #function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm)
nikcleju@21 298 def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm):
nikcleju@21 299 #if strcmp(class(M), 'function_handle')
nikcleju@21 300 if hasattr(M, '__call__'):
nikcleju@21 301 w = MH(M(x));
nikcleju@21 302 else: ## M and MH are matrices
nikcleju@27 303 w = numpy.dot(numpy.dot(MH, M), x);
nikcleju@21 304
nikcleju@21 305 if hasattr(Omega, '__call__'):
nikcleju@21 306 v = Omega(x);
nikcleju@27 307 vt = numpy.zeros(v.size);
nikcleju@21 308 vt[L] = v[L].copy();
nikcleju@21 309 w = w + lm*OmegaH(vt);
nikcleju@21 310 else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose
nikcleju@27 311 w = w + lm*numpy.dot(numpy.dot(OmegaH[:, L],Omega[L, :]),x);
nikcleju@21 312
nikcleju@21 313 return w
nikcleju@21 314
nikcleju@21 315 def GAP(y, M, MH, Omega, OmegaH, params, xinit):
nikcleju@21 316 #function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
nikcleju@21 317
nikcleju@21 318 ##
nikcleju@21 319 # [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
nikcleju@21 320 #
nikcleju@21 321 # Greedy Analysis Pursuit Algorithm
nikcleju@21 322 # This aims to find an approximate (sometimes exact) solution of
nikcleju@21 323 # xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon.
nikcleju@21 324 #
nikcleju@21 325 # Outputs:
nikcleju@21 326 # xhat : estimate of the target cosparse vector x0.
nikcleju@21 327 # Lambdahat : estimate of the cosupport of x0.
nikcleju@21 328 #
nikcleju@21 329 # Inputs:
nikcleju@21 330 # y : observation/measurement vector of a target cosparse solution x0,
nikcleju@21 331 # given by relation y = M * x0 + noise.
nikcleju@21 332 # M : measurement matrix. This should be given either as a matrix or as a function handle
nikcleju@21 333 # which implements linear transformation.
nikcleju@21 334 # MH : conjugate transpose of M.
nikcleju@21 335 # Omega : analysis operator. Like M, this should be given either as a matrix or as a function
nikcleju@21 336 # handle which implements linear transformation.
nikcleju@21 337 # OmegaH : conjugate transpose of OmegaH.
nikcleju@21 338 # params : parameters that govern the behavior of the algorithm (mostly).
nikcleju@21 339 # params.num_iteration : GAP performs this number of iterations.
nikcleju@21 340 # params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration.
nikcleju@21 341 # if the value is < 1, then the rows to be eliminated are determined by
nikcleju@21 342 # j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|.
nikcleju@21 343 # if the value is >= 1, then greedy_level is the number of rows to be
nikcleju@21 344 # eliminated at each iteration.
nikcleju@21 345 # params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than
nikcleju@21 346 # this, GAP terminates.
nikcleju@21 347 # params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method
nikcleju@21 348 # is used to compute
nikcleju@21 349 # argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon.
nikcleju@21 350 # params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above
nikcleju@21 351 # problem is solved.
nikcleju@21 352 # params.noise_level : this corresponds to epsilon above.
nikcleju@21 353 # xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1).
nikcleju@21 354 #
nikcleju@21 355 # Examples:
nikcleju@21 356 #
nikcleju@21 357 # Not particularly interesting:
nikcleju@21 358 # >> d = 100; p = 110; m = 60;
nikcleju@21 359 # >> M = randn(m, d);
nikcleju@21 360 # >> Omega = randn(p, d);
nikcleju@21 361 # >> y = M * x0 + noise;
nikcleju@21 362 # >> params.num_iteration = 40;
nikcleju@21 363 # >> params.greedy_level = 0.9;
nikcleju@21 364 # >> params.stopping_coefficient_size = 1e-4;
nikcleju@21 365 # >> params.l2solver = 'pseudoinverse';
nikcleju@21 366 # >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1));
nikcleju@21 367 #
nikcleju@21 368 # Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist:
nikcleju@21 369 # >> n = 128;
nikcleju@21 370 # >> M = @(t) FourierSampling(t, n);
nikcleju@21 371 # >> MH = @(u) FourierSamplingH(u, n);
nikcleju@21 372 # >> Omega = @(t) FDAnalysis(t, n);
nikcleju@21 373 # >> OmegaH = @(u) FDSynthesis(t, n);
nikcleju@21 374 # >> params.num_iteration = 1000;
nikcleju@21 375 # >> params.greedy_level = 50;
nikcleju@21 376 # >> params.stopping_coefficient_size = 1e-5;
nikcleju@21 377 # >> params.l2solver = 'cg'; # in fact, 'pseudoinverse' does not even make sense.
nikcleju@21 378 # >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1));
nikcleju@21 379 #
nikcleju@21 380 # Above: FourierSampling and FourierSamplingH are conjugate transpose of each other.
nikcleju@21 381 # FDAnalysis and FDSynthesis are conjugate transpose of each other.
nikcleju@21 382 # These routines are problem specific and need to be implemented by the user.
nikcleju@21 383
nikcleju@21 384 #d = length(xinit(:));
nikcleju@21 385 d = xinit.size
nikcleju@21 386
nikcleju@21 387 #if strcmp(class(Omega), 'function_handle')
nikcleju@21 388 # p = length(Omega(zeros(d,1)));
nikcleju@21 389 #else ## Omega is a matrix
nikcleju@21 390 # p = size(Omega, 1);
nikcleju@21 391 #end
nikcleju@21 392 if hasattr(Omega, '__call__'):
nikcleju@27 393 p = Omega(numpy.zeros((d,1)))
nikcleju@21 394 else:
nikcleju@21 395 p = Omega.shape[0]
nikcleju@21 396
nikcleju@21 397
nikcleju@21 398 iter = 0
nikcleju@21 399 lagmult = 1e-4
nikcleju@21 400 #Lambdahat = 1:p;
nikcleju@27 401 Lambdahat = numpy.arange(p)
nikcleju@21 402 #while iter < params.num_iteration
nikcleju@21 403 while iter < params["num_iteration"]:
nikcleju@21 404 iter = iter + 1
nikcleju@21 405 #[xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params);
nikcleju@21 406 xhat,analysis_repr,lagmult = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params)
nikcleju@21 407 #[to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level);
nikcleju@27 408 to_be_removed,maxcoef = FindRowsToRemove(analysis_repr, params["greedy_level"])
nikcleju@21 409 #disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]);
nikcleju@21 410 #print '** maxcoef=',maxcoef,' target=',params['stopping_coefficient_size'],' rows_remaining=',Lambdahat.size,' lagmult=',lagmult
nikcleju@21 411 if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params):
nikcleju@21 412 break
nikcleju@21 413
nikcleju@21 414 xinit = xhat.copy()
nikcleju@21 415 #Lambdahat[to_be_removed] = []
nikcleju@27 416 Lambdahat = numpy.delete(Lambdahat.squeeze(),to_be_removed)
nikcleju@21 417
nikcleju@21 418 #n = sqrt(d);
nikcleju@21 419 #figure(9);
nikcleju@21 420 #RR = zeros(2*n, n-1);
nikcleju@21 421 #RR(Lambdahat) = 1;
nikcleju@21 422 #XD = ones(n, n);
nikcleju@21 423 #XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :);
nikcleju@21 424 #XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :);
nikcleju@21 425 #XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)';
nikcleju@21 426 #XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)';
nikcleju@21 427 #XD = FD2DiagnosisPlot(n, Lambdahat);
nikcleju@21 428 #imshow(XD);
nikcleju@21 429 #figure(10);
nikcleju@21 430 #imshow(reshape(real(xhat), n, n));
nikcleju@21 431
nikcleju@21 432 #return;
nikcleju@27 433 return xhat,Lambdahat
nikcleju@21 434
nikcleju@21 435 def FindRowsToRemove(analysis_repr, greedy_level):
nikcleju@21 436 #function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level)
nikcleju@21 437
nikcleju@21 438 #abscoef = abs(analysis_repr(:));
nikcleju@27 439 abscoef = numpy.abs(analysis_repr)
nikcleju@21 440 #n = length(abscoef);
nikcleju@21 441 n = abscoef.size
nikcleju@21 442 #maxcoef = max(abscoef);
nikcleju@21 443 maxcoef = abscoef.max()
nikcleju@21 444 if greedy_level >= 1:
nikcleju@21 445 #qq = quantile(abscoef, 1.0-greedy_level/n);
nikcleju@21 446 qq = sp.stats.mstats.mquantile(abscoef, 1.0-greedy_level/n, 0.5, 0.5)
nikcleju@21 447 else:
nikcleju@21 448 qq = maxcoef*greedy_level
nikcleju@21 449
nikcleju@21 450 #to_be_removed = find(abscoef >= qq);
nikcleju@27 451 # [0] needed because nonzero() returns a tuple of arrays!
nikcleju@27 452 to_be_removed = numpy.nonzero(abscoef >= qq)[0]
nikcleju@21 453 #return;
nikcleju@27 454 return to_be_removed,maxcoef
nikcleju@21 455
nikcleju@21 456 def check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params):
nikcleju@21 457 #function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params)
nikcleju@21 458
nikcleju@21 459 #if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size
nikcleju@21 460 if ('stopping_coefficient_size' in params) and maxcoef < params['stopping_coefficient_size']:
nikcleju@21 461 return 1
nikcleju@21 462
nikcleju@21 463 #if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size
nikcleju@21 464 if ('stopping_lagrange_multiplier_size' in params) and lagmult > params['stopping_lagrange_multiplier_size']:
nikcleju@21 465 return 1
nikcleju@21 466
nikcleju@21 467 #if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change
nikcleju@27 468 if ('stopping_relative_solution_change' in params) and numpy.linalg.norm(xhat-xinit)/numpy.linalg.norm(xhat) < params['stopping_relative_solution_change']:
nikcleju@21 469 return 1
nikcleju@21 470
nikcleju@21 471 #if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity
nikcleju@21 472 if ('stopping_cosparsity' in params) and Lambdahat.size() < params['stopping_cosparsity']:
nikcleju@21 473 return 1
nikcleju@21 474
nikcleju@21 475 return 0