annotate pyCSalgos/BP/l1qc.py @ 2:735a0e24575c

Organized folders: added tests, apps, matlab, docs folders. Added __init__.py files
author nikcleju
date Fri, 21 Oct 2011 13:53:49 +0000
parents
children 537f7798e186
rev   line source
nikcleju@2 1
nikcleju@2 2 import numpy as np
nikcleju@2 3 import scipy.linalg
nikcleju@2 4 import math
nikcleju@2 5
nikcleju@2 6
nikcleju@2 7 #function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
nikcleju@2 8 def cgsolve(A, b, tol, maxiter, verbose=1):
nikcleju@2 9 # Solve a symmetric positive definite system Ax = b via conjugate gradients.
nikcleju@2 10 #
nikcleju@2 11 # Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
nikcleju@2 12 #
nikcleju@2 13 # A - Either an NxN matrix, or a function handle.
nikcleju@2 14 #
nikcleju@2 15 # b - N vector
nikcleju@2 16 #
nikcleju@2 17 # tol - Desired precision. Algorithm terminates when
nikcleju@2 18 # norm(Ax-b)/norm(b) < tol .
nikcleju@2 19 #
nikcleju@2 20 # maxiter - Maximum number of iterations.
nikcleju@2 21 #
nikcleju@2 22 # verbose - If 0, do not print out progress messages.
nikcleju@2 23 # If and integer greater than 0, print out progress every 'verbose' iters.
nikcleju@2 24 #
nikcleju@2 25 # Written by: Justin Romberg, Caltech
nikcleju@2 26 # Email: jrom@acm.caltech.edu
nikcleju@2 27 # Created: October 2005
nikcleju@2 28 #
nikcleju@2 29
nikcleju@2 30 #---------------------
nikcleju@2 31 # Original Matab code:
nikcleju@2 32 #
nikcleju@2 33 #if (nargin < 5), verbose = 1; end
nikcleju@2 34 #
nikcleju@2 35 #implicit = isa(A,'function_handle');
nikcleju@2 36 #
nikcleju@2 37 #x = zeros(length(b),1);
nikcleju@2 38 #r = b;
nikcleju@2 39 #d = r;
nikcleju@2 40 #delta = r'*r;
nikcleju@2 41 #delta0 = b'*b;
nikcleju@2 42 #numiter = 0;
nikcleju@2 43 #bestx = x;
nikcleju@2 44 #bestres = sqrt(delta/delta0);
nikcleju@2 45 #while ((numiter < maxiter) && (delta > tol^2*delta0))
nikcleju@2 46 #
nikcleju@2 47 # # q = A*d
nikcleju@2 48 # if (implicit), q = A(d); else q = A*d; end
nikcleju@2 49 #
nikcleju@2 50 # alpha = delta/(d'*q);
nikcleju@2 51 # x = x + alpha*d;
nikcleju@2 52 #
nikcleju@2 53 # if (mod(numiter+1,50) == 0)
nikcleju@2 54 # # r = b - Aux*x
nikcleju@2 55 # if (implicit), r = b - A(x); else r = b - A*x; end
nikcleju@2 56 # else
nikcleju@2 57 # r = r - alpha*q;
nikcleju@2 58 # end
nikcleju@2 59 #
nikcleju@2 60 # deltaold = delta;
nikcleju@2 61 # delta = r'*r;
nikcleju@2 62 # beta = delta/deltaold;
nikcleju@2 63 # d = r + beta*d;
nikcleju@2 64 # numiter = numiter + 1;
nikcleju@2 65 # if (sqrt(delta/delta0) < bestres)
nikcleju@2 66 # bestx = x;
nikcleju@2 67 # bestres = sqrt(delta/delta0);
nikcleju@2 68 # end
nikcleju@2 69 #
nikcleju@2 70 # if ((verbose) && (mod(numiter,verbose)==0))
nikcleju@2 71 # disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
nikcleju@2 72 # numiter, bestres, sqrt(delta/delta0)));
nikcleju@2 73 # end
nikcleju@2 74 #
nikcleju@2 75 #end
nikcleju@2 76 #
nikcleju@2 77 #if (verbose)
nikcleju@2 78 # disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
nikcleju@2 79 #end
nikcleju@2 80 #x = bestx;
nikcleju@2 81 #res = bestres;
nikcleju@2 82 #iter = numiter;
nikcleju@2 83
nikcleju@2 84 # End of original Matab code
nikcleju@2 85 #----------------------------
nikcleju@2 86
nikcleju@2 87 #if (nargin < 5), verbose = 1; end
nikcleju@2 88 # Optional argument
nikcleju@2 89
nikcleju@2 90 #implicit = isa(A,'function_handle');
nikcleju@2 91 if hasattr(A, '__call__'):
nikcleju@2 92 implicit = True
nikcleju@2 93 else:
nikcleju@2 94 implicit = False
nikcleju@2 95
nikcleju@2 96 x = np.zeros(b.size)
nikcleju@2 97 r = b.copy()
nikcleju@2 98 d = r.copy()
nikcleju@2 99 delta = np.vdot(r,r)
nikcleju@2 100 delta0 = np.vdot(b,b)
nikcleju@2 101 numiter = 0
nikcleju@2 102 bestx = x.copy()
nikcleju@2 103 bestres = math.sqrt(delta/delta0)
nikcleju@2 104 while (numiter < maxiter) and (delta > tol**2*delta0):
nikcleju@2 105
nikcleju@2 106 # q = A*d
nikcleju@2 107 #if (implicit), q = A(d); else q = A*d; end
nikcleju@2 108 if implicit:
nikcleju@2 109 q = A(d)
nikcleju@2 110 else:
nikcleju@2 111 q = np.dot(A,d)
nikcleju@2 112
nikcleju@2 113 alpha = delta/np.vdot(d,q)
nikcleju@2 114 x = x + alpha*d
nikcleju@2 115
nikcleju@2 116 if divmod(numiter+1,50)[1] == 0:
nikcleju@2 117 # r = b - Aux*x
nikcleju@2 118 #if (implicit), r = b - A(x); else r = b - A*x; end
nikcleju@2 119 if implicit:
nikcleju@2 120 r = b - A(x)
nikcleju@2 121 else:
nikcleju@2 122 r = b - np.dot(A,x)
nikcleju@2 123 else:
nikcleju@2 124 r = r - alpha*q
nikcleju@2 125 #end
nikcleju@2 126
nikcleju@2 127 deltaold = delta;
nikcleju@2 128 delta = np.vdot(r,r)
nikcleju@2 129 beta = delta/deltaold;
nikcleju@2 130 d = r + beta*d
nikcleju@2 131 numiter = numiter + 1
nikcleju@2 132 if (math.sqrt(delta/delta0) < bestres):
nikcleju@2 133 bestx = x.copy()
nikcleju@2 134 bestres = math.sqrt(delta/delta0)
nikcleju@2 135 #end
nikcleju@2 136
nikcleju@2 137 if ((verbose) and (divmod(numiter,verbose)[1]==0)):
nikcleju@2 138 #disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
nikcleju@2 139 # numiter, bestres, sqrt(delta/delta0)));
nikcleju@2 140 print 'cg: Iter = ',numiter,', Best residual = ',bestres,', Current residual = ',math.sqrt(delta/delta0)
nikcleju@2 141 #end
nikcleju@2 142
nikcleju@2 143 #end
nikcleju@2 144
nikcleju@2 145 if (verbose):
nikcleju@2 146 #disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
nikcleju@2 147 print 'cg: Iterations = ',numiter,', best residual = ',bestres
nikcleju@2 148 #end
nikcleju@2 149 x = bestx.copy()
nikcleju@2 150 res = bestres
nikcleju@2 151 iter = numiter
nikcleju@2 152
nikcleju@2 153 return x,res,iter
nikcleju@2 154
nikcleju@2 155
nikcleju@2 156
nikcleju@2 157 #function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
nikcleju@2 158 def l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter):
nikcleju@2 159 # Newton algorithm for log-barrier subproblems for l1 minimization
nikcleju@2 160 # with quadratic constraints.
nikcleju@2 161 #
nikcleju@2 162 # Usage:
nikcleju@2 163 # [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau,
nikcleju@2 164 # newtontol, newtonmaxiter, cgtol, cgmaxiter)
nikcleju@2 165 #
nikcleju@2 166 # x0,u0 - starting points
nikcleju@2 167 #
nikcleju@2 168 # A - Either a handle to a function that takes a N vector and returns a K
nikcleju@2 169 # vector , or a KxN matrix. If A is a function handle, the algorithm
nikcleju@2 170 # operates in "largescale" mode, solving the Newton systems via the
nikcleju@2 171 # Conjugate Gradients algorithm.
nikcleju@2 172 #
nikcleju@2 173 # At - Handle to a function that takes a K vector and returns an N vector.
nikcleju@2 174 # If A is a KxN matrix, At is ignored.
nikcleju@2 175 #
nikcleju@2 176 # b - Kx1 vector of observations.
nikcleju@2 177 #
nikcleju@2 178 # epsilon - scalar, constraint relaxation parameter
nikcleju@2 179 #
nikcleju@2 180 # tau - Log barrier parameter.
nikcleju@2 181 #
nikcleju@2 182 # newtontol - Terminate when the Newton decrement is <= newtontol.
nikcleju@2 183 # Default = 1e-3.
nikcleju@2 184 #
nikcleju@2 185 # newtonmaxiter - Maximum number of iterations.
nikcleju@2 186 # Default = 50.
nikcleju@2 187 #
nikcleju@2 188 # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
nikcleju@2 189 # Default = 1e-8.
nikcleju@2 190 #
nikcleju@2 191 # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
nikcleju@2 192 # if A is a matrix.
nikcleju@2 193 # Default = 200.
nikcleju@2 194 #
nikcleju@2 195 # Written by: Justin Romberg, Caltech
nikcleju@2 196 # Email: jrom@acm.caltech.edu
nikcleju@2 197 # Created: October 2005
nikcleju@2 198 #
nikcleju@2 199
nikcleju@2 200 #---------------------
nikcleju@2 201 # Original Matab code:
nikcleju@2 202
nikcleju@2 203 ## check if the matrix A is implicit or explicit
nikcleju@2 204 #largescale = isa(A,'function_handle');
nikcleju@2 205 #
nikcleju@2 206 ## line search parameters
nikcleju@2 207 #alpha = 0.01;
nikcleju@2 208 #beta = 0.5;
nikcleju@2 209 #
nikcleju@2 210 #if (~largescale), AtA = A'*A; end
nikcleju@2 211 #
nikcleju@2 212 ## initial point
nikcleju@2 213 #x = x0;
nikcleju@2 214 #u = u0;
nikcleju@2 215 #if (largescale), r = A(x) - b; else r = A*x - b; end
nikcleju@2 216 #fu1 = x - u;
nikcleju@2 217 #fu2 = -x - u;
nikcleju@2 218 #fe = 1/2*(r'*r - epsilon^2);
nikcleju@2 219 #f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe));
nikcleju@2 220 #
nikcleju@2 221 #niter = 0;
nikcleju@2 222 #done = 0;
nikcleju@2 223 #while (~done)
nikcleju@2 224 #
nikcleju@2 225 # if (largescale), atr = At(r); else atr = A'*r; end
nikcleju@2 226 #
nikcleju@2 227 # ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
nikcleju@2 228 # ntgu = -tau - 1./fu1 - 1./fu2;
nikcleju@2 229 # gradf = -(1/tau)*[ntgz; ntgu];
nikcleju@2 230 #
nikcleju@2 231 # sig11 = 1./fu1.^2 + 1./fu2.^2;
nikcleju@2 232 # sig12 = -1./fu1.^2 + 1./fu2.^2;
nikcleju@2 233 # sigx = sig11 - sig12.^2./sig11;
nikcleju@2 234 #
nikcleju@2 235 # w1p = ntgz - sig12./sig11.*ntgu;
nikcleju@2 236 # if (largescale)
nikcleju@2 237 # h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
nikcleju@2 238 # [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
nikcleju@2 239 # if (cgres > 1/2)
nikcleju@2 240 # disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
nikcleju@2 241 # xp = x; up = u;
nikcleju@2 242 # return
nikcleju@2 243 # end
nikcleju@2 244 # Adx = A(dx);
nikcleju@2 245 # else
nikcleju@2 246 # H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
nikcleju@2 247 # opts.POSDEF = true; opts.SYM = true;
nikcleju@2 248 # [dx,hcond] = linsolve(H11p, w1p, opts);
nikcleju@2 249 # if (hcond < 1e-14)
nikcleju@2 250 # disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
nikcleju@2 251 # xp = x; up = u;
nikcleju@2 252 # return
nikcleju@2 253 # end
nikcleju@2 254 # Adx = A*dx;
nikcleju@2 255 # end
nikcleju@2 256 # du = (1./sig11).*ntgu - (sig12./sig11).*dx;
nikcleju@2 257 #
nikcleju@2 258 # # minimum step size that stays in the interior
nikcleju@2 259 # ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
nikcleju@2 260 # aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
nikcleju@2 261 # smax = min(1,min([...
nikcleju@2 262 # -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
nikcleju@2 263 # (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
nikcleju@2 264 # ]));
nikcleju@2 265 # s = (0.99)*smax;
nikcleju@2 266 #
nikcleju@2 267 # # backtracking line search
nikcleju@2 268 # suffdec = 0;
nikcleju@2 269 # backiter = 0;
nikcleju@2 270 # while (~suffdec)
nikcleju@2 271 # xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
nikcleju@2 272 # fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
nikcleju@2 273 # fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
nikcleju@2 274 # flin = f + alpha*s*(gradf'*[dx; du]);
nikcleju@2 275 # suffdec = (fp <= flin);
nikcleju@2 276 # s = beta*s;
nikcleju@2 277 # backiter = backiter + 1;
nikcleju@2 278 # if (backiter > 32)
nikcleju@2 279 # disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)');
nikcleju@2 280 # xp = x; up = u;
nikcleju@2 281 # return
nikcleju@2 282 # end
nikcleju@2 283 # end
nikcleju@2 284 #
nikcleju@2 285 # # set up for next iteration
nikcleju@2 286 # x = xp; u = up; r = rp;
nikcleju@2 287 # fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
nikcleju@2 288 #
nikcleju@2 289 # lambda2 = -(gradf'*[dx; du]);
nikcleju@2 290 # stepsize = s*norm([dx; du]);
nikcleju@2 291 # niter = niter + 1;
nikcleju@2 292 # done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
nikcleju@2 293 #
nikcleju@2 294 # disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
nikcleju@2 295 # niter, f, lambda2/2, stepsize));
nikcleju@2 296 # if (largescale)
nikcleju@2 297 # disp(sprintf(' CG Res = #8.3e, CG Iter = #d', cgres, cgiter));
nikcleju@2 298 # else
nikcleju@2 299 # disp(sprintf(' H11p condition number = #8.3e', hcond));
nikcleju@2 300 # end
nikcleju@2 301 #
nikcleju@2 302 #end
nikcleju@2 303
nikcleju@2 304 # End of original Matab code
nikcleju@2 305 #----------------------------
nikcleju@2 306
nikcleju@2 307 # check if the matrix A is implicit or explicit
nikcleju@2 308 #largescale = isa(A,'function_handle');
nikcleju@2 309 if hasattr(A, '__call__'):
nikcleju@2 310 largescale = True
nikcleju@2 311 else:
nikcleju@2 312 largescale = False
nikcleju@2 313
nikcleju@2 314 # line search parameters
nikcleju@2 315 alpha = 0.01
nikcleju@2 316 beta = 0.5
nikcleju@2 317
nikcleju@2 318 #if (~largescale), AtA = A'*A; end
nikcleju@2 319 if not largescale:
nikcleju@2 320 AtA = np.dot(A.T,A)
nikcleju@2 321
nikcleju@2 322 # initial point
nikcleju@2 323 x = x0.copy()
nikcleju@2 324 u = u0.copy()
nikcleju@2 325 #if (largescale), r = A(x) - b; else r = A*x - b; end
nikcleju@2 326 if largescale:
nikcleju@2 327 r = A(x) - b
nikcleju@2 328 else:
nikcleju@2 329 r = np.dot(A,x) - b
nikcleju@2 330
nikcleju@2 331 fu1 = x - u
nikcleju@2 332 fu2 = -x - u
nikcleju@2 333 fe = 1/2*(np.vdot(r,r) - epsilon**2)
nikcleju@2 334 f = u.sum() - (1/tau)*(np.log(-fu1).sum() + np.log(-fu2).sum() + math.log(-fe))
nikcleju@2 335
nikcleju@2 336 niter = 0
nikcleju@2 337 done = 0
nikcleju@2 338 while not done:
nikcleju@2 339
nikcleju@2 340 #if (largescale), atr = At(r); else atr = A'*r; end
nikcleju@2 341 if largescale:
nikcleju@2 342 atr = At(r)
nikcleju@2 343 else:
nikcleju@2 344 atr = np.dot(A.T,r)
nikcleju@2 345
nikcleju@2 346 #ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
nikcleju@2 347 ntgz = 1.0/fu1 - 1.0/fu2 + 1.0/fe*atr
nikcleju@2 348 #ntgu = -tau - 1./fu1 - 1./fu2;
nikcleju@2 349 ntgu = -tau - 1.0/fu1 - 1.0/fu2
nikcleju@2 350 #gradf = -(1/tau)*[ntgz; ntgu];
nikcleju@2 351 gradf = -(1.0/tau)*np.concatenate((ntgz, ntgu),0)
nikcleju@2 352
nikcleju@2 353 #sig11 = 1./fu1.^2 + 1./fu2.^2;
nikcleju@2 354 sig11 = 1.0/(fu1**2) + 1.0/(fu2**2)
nikcleju@2 355 #sig12 = -1./fu1.^2 + 1./fu2.^2;
nikcleju@2 356 sig12 = -1.0/(fu1**2) + 1.0/(fu2**2)
nikcleju@2 357 #sigx = sig11 - sig12.^2./sig11;
nikcleju@2 358 sigx = sig11 - (sig12**2)/sig11
nikcleju@2 359
nikcleju@2 360 #w1p = ntgz - sig12./sig11.*ntgu;
nikcleju@2 361 w1p = ntgz - sig12/sig11*ntgu
nikcleju@2 362 if largescale:
nikcleju@2 363 #h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
nikcleju@2 364 h11pfun = lambda z: sigx*z - (1.0/fe)*At(A(z)) + 1.0/(fe**2)*np.dot(np.dot(atr.T,z),atr)
nikcleju@2 365 dx,cgres,cgiter = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0)
nikcleju@2 366 if (cgres > 1/2):
nikcleju@2 367 print 'Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'
nikcleju@2 368 xp = x.copy()
nikcleju@2 369 up = u.copy()
nikcleju@2 370 return xp,up,niter
nikcleju@2 371 #end
nikcleju@2 372 Adx = A(dx)
nikcleju@2 373 else:
nikcleju@2 374 #H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
nikcleju@2 375 H11p = np.diag(sigx) - (1/fe)*AtA + (1/fe)**2*np.dot(atr,atr.T)
nikcleju@2 376 #opts.POSDEF = true; opts.SYM = true;
nikcleju@2 377 #[dx,hcond] = linsolve(H11p, w1p, opts);
nikcleju@2 378 #if (hcond < 1e-14)
nikcleju@2 379 # disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
nikcleju@2 380 # xp = x; up = u;
nikcleju@2 381 # return
nikcleju@2 382 #end
nikcleju@2 383 try:
nikcleju@2 384 dx = scipy.linalg.solve(H11p, w1p, sym_pos=True)
nikcleju@2 385 hcond = 1.0/scipy.linalg.cond(H11p)
nikcleju@2 386 except scipy.linalg.LinAlgError:
nikcleju@2 387 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
nikcleju@2 388 xp = x.copy()
nikcleju@2 389 up = u.copy()
nikcleju@2 390 return xp,up,niter
nikcleju@2 391 if hcond < 1e-14:
nikcleju@2 392 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
nikcleju@2 393 xp = x.copy()
nikcleju@2 394 up = u.copy()
nikcleju@2 395 return xp,up,niter
nikcleju@2 396
nikcleju@2 397 #Adx = A*dx;
nikcleju@2 398 Adx = np.dot(A,dx)
nikcleju@2 399 #end
nikcleju@2 400 #du = (1./sig11).*ntgu - (sig12./sig11).*dx;
nikcleju@2 401 du = (1.0/sig11)*ntgu - (sig12/sig11)*dx;
nikcleju@2 402
nikcleju@2 403 # minimum step size that stays in the interior
nikcleju@2 404 #ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
nikcleju@2 405 ifu1 = np.nonzero((dx-du)>0)
nikcleju@2 406 ifu2 = np.nonzero((-dx-du)>0)
nikcleju@2 407 #aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
nikcleju@2 408 aqe = np.dot(Adx.T,Adx)
nikcleju@2 409 bqe = 2*np.dot(r.T,Adx)
nikcleju@2 410 cqe = np.vdot(r,r) - epsilon**2
nikcleju@2 411 #smax = min(1,min([...
nikcleju@2 412 # -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
nikcleju@2 413 # (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
nikcleju@2 414 # ]));
nikcleju@2 415 smax = min(1,np.concatenate((-fu1[ifu1]/(dx[ifu1]-du[ifu1]) , -fu2[ifu2]/(-dx[ifu2]-du[ifu2]) , (-bqe + math.sqrt(bqe**2-4*aqe*cqe))/(2*aqe)),0).min())
nikcleju@2 416
nikcleju@2 417 s = (0.99)*smax
nikcleju@2 418
nikcleju@2 419 # backtracking line search
nikcleju@2 420 suffdec = 0
nikcleju@2 421 backiter = 0
nikcleju@2 422 while not suffdec:
nikcleju@2 423 #xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
nikcleju@2 424 xp = x + s*dx
nikcleju@2 425 up = u + s*du
nikcleju@2 426 rp = r + s*Adx
nikcleju@2 427 #fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
nikcleju@2 428 fu1p = xp - up
nikcleju@2 429 fu2p = -xp - up
nikcleju@2 430 fep = 0.5*(np.vdot(r,r) - epsilon**2)
nikcleju@2 431 #fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
nikcleju@2 432 fp = up.sum() - (1.0/tau)*(np.log(-fu1p).sum() + np.log(-fu2p).sum() + log(-fep))
nikcleju@2 433 #flin = f + alpha*s*(gradf'*[dx; du]);
nikcleju@2 434 flin = f + alpha*s*np.dot(gradf.T , np.concatenate((dx,du),0))
nikcleju@2 435 #suffdec = (fp <= flin);
nikcleju@2 436 if fp <= flin:
nikcleju@2 437 suffdec = True
nikcleju@2 438 else:
nikcleju@2 439 suffdec = False
nikcleju@2 440
nikcleju@2 441 s = beta*s
nikcleju@2 442 backiter = backiter + 1
nikcleju@2 443 if (backiter > 32):
nikcleju@2 444 print 'Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'
nikcleju@2 445 xp = x.copy()
nikcleju@2 446 up = u.copy()
nikcleju@2 447 return xp,up,niter
nikcleju@2 448 #end
nikcleju@2 449 #end
nikcleju@2 450
nikcleju@2 451 # set up for next iteration
nikcleju@2 452 #x = xp; u = up; r = rp;
nikcleju@2 453 x = xp.copy()
nikcleju@2 454 u = up.copy()
nikcleju@2 455 r = rp.copy()
nikcleju@2 456 #fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
nikcleju@2 457 fu1 = fu1p.copy()
nikcleju@2 458 fu2 = fu2p.copy()
nikcleju@2 459 fe = fep
nikcleju@2 460 f = fp
nikcleju@2 461
nikcleju@2 462 #lambda2 = -(gradf'*[dx; du]);
nikcleju@2 463 lambda2 = -np.dot(gradf , np.concatenate((dx,du),0))
nikcleju@2 464 #stepsize = s*norm([dx; du]);
nikcleju@2 465 stepsize = s * np.linalg.norm(np.concatenate((dx,du),0))
nikcleju@2 466 niter = niter + 1
nikcleju@2 467 #done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
nikcleju@2 468 if lambda2/2.0 < newtontol or niter >= newtonmaxiter:
nikcleju@2 469 done = 1
nikcleju@2 470 else:
nikcleju@2 471 done = 0
nikcleju@2 472
nikcleju@2 473 #disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
nikcleju@2 474 print 'Newton iter = ',niter,', Functional = ',f,', Newton decrement = ',lambda2/2.0,', Stepsize = ',stepsize
nikcleju@2 475
nikcleju@2 476 if largescale:
nikcleju@2 477 print ' CG Res = ',cgres,', CG Iter = ',cgiter
nikcleju@2 478 else:
nikcleju@2 479 print ' H11p condition number = ',hcond
nikcleju@2 480 #end
nikcleju@2 481
nikcleju@2 482 #end
nikcleju@2 483 return xp,up,niter
nikcleju@2 484
nikcleju@2 485 #function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
nikcleju@2 486 def l1qc_logbarrier(x0, A, At, b, epsilon, lbtol=1e-3, mu=10, cgtol=1e-8, cgmaxiter=200):
nikcleju@2 487 # Solve quadratically constrained l1 minimization:
nikcleju@2 488 # min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
nikcleju@2 489 #
nikcleju@2 490 # Reformulate as the second-order cone program
nikcleju@2 491 # min_{x,u} sum(u) s.t. x - u <= 0,
nikcleju@2 492 # -x - u <= 0,
nikcleju@2 493 # 1/2(||Ax-b||^2 - \epsilon^2) <= 0
nikcleju@2 494 # and use a log barrier algorithm.
nikcleju@2 495 #
nikcleju@2 496 # Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
nikcleju@2 497 #
nikcleju@2 498 # x0 - Nx1 vector, initial point.
nikcleju@2 499 #
nikcleju@2 500 # A - Either a handle to a function that takes a N vector and returns a K
nikcleju@2 501 # vector , or a KxN matrix. If A is a function handle, the algorithm
nikcleju@2 502 # operates in "largescale" mode, solving the Newton systems via the
nikcleju@2 503 # Conjugate Gradients algorithm.
nikcleju@2 504 #
nikcleju@2 505 # At - Handle to a function that takes a K vector and returns an N vector.
nikcleju@2 506 # If A is a KxN matrix, At is ignored.
nikcleju@2 507 #
nikcleju@2 508 # b - Kx1 vector of observations.
nikcleju@2 509 #
nikcleju@2 510 # epsilon - scalar, constraint relaxation parameter
nikcleju@2 511 #
nikcleju@2 512 # lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
nikcleju@2 513 # Also, the number of log barrier iterations is completely
nikcleju@2 514 # determined by lbtol.
nikcleju@2 515 # Default = 1e-3.
nikcleju@2 516 #
nikcleju@2 517 # mu - Factor by which to increase the barrier constant at each iteration.
nikcleju@2 518 # Default = 10.
nikcleju@2 519 #
nikcleju@2 520 # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
nikcleju@2 521 # Default = 1e-8.
nikcleju@2 522 #
nikcleju@2 523 # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
nikcleju@2 524 # if A is a matrix.
nikcleju@2 525 # Default = 200.
nikcleju@2 526 #
nikcleju@2 527 # Written by: Justin Romberg, Caltech
nikcleju@2 528 # Email: jrom@acm.caltech.edu
nikcleju@2 529 # Created: October 2005
nikcleju@2 530 #
nikcleju@2 531
nikcleju@2 532 #---------------------
nikcleju@2 533 # Original Matab code:
nikcleju@2 534
nikcleju@2 535 #largescale = isa(A,'function_handle');
nikcleju@2 536 #
nikcleju@2 537 #if (nargin < 6), lbtol = 1e-3; end
nikcleju@2 538 #if (nargin < 7), mu = 10; end
nikcleju@2 539 #if (nargin < 8), cgtol = 1e-8; end
nikcleju@2 540 #if (nargin < 9), cgmaxiter = 200; end
nikcleju@2 541 #
nikcleju@2 542 #newtontol = lbtol;
nikcleju@2 543 #newtonmaxiter = 50;
nikcleju@2 544 #
nikcleju@2 545 #N = length(x0);
nikcleju@2 546 #
nikcleju@2 547 ## starting point --- make sure that it is feasible
nikcleju@2 548 #if (largescale)
nikcleju@2 549 # if (norm(A(x0)-b) > epsilon)
nikcleju@2 550 # disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
nikcleju@2 551 # AAt = @(z) A(At(z));
nikcleju@2 552 # w = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
nikcleju@2 553 # if (cgres > 1/2)
nikcleju@2 554 # disp('A*At is ill-conditioned: cannot find starting point');
nikcleju@2 555 # xp = x0;
nikcleju@2 556 # return;
nikcleju@2 557 # end
nikcleju@2 558 # x0 = At(w);
nikcleju@2 559 # end
nikcleju@2 560 #else
nikcleju@2 561 # if (norm(A*x0-b) > epsilon)
nikcleju@2 562 # disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
nikcleju@2 563 # opts.POSDEF = true; opts.SYM = true;
nikcleju@2 564 # [w, hcond] = linsolve(A*A', b, opts);
nikcleju@2 565 # if (hcond < 1e-14)
nikcleju@2 566 # disp('A*At is ill-conditioned: cannot find starting point');
nikcleju@2 567 # xp = x0;
nikcleju@2 568 # return;
nikcleju@2 569 # end
nikcleju@2 570 # x0 = A'*w;
nikcleju@2 571 # end
nikcleju@2 572 #end
nikcleju@2 573 #x = x0;
nikcleju@2 574 #u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
nikcleju@2 575 #
nikcleju@2 576 #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
nikcleju@2 577 #
nikcleju@2 578 ## choose initial value of tau so that the duality gap after the first
nikcleju@2 579 ## step will be about the origial norm
nikcleju@2 580 #tau = max((2*N+1)/sum(abs(x0)), 1);
nikcleju@2 581 #
nikcleju@2 582 #lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
nikcleju@2 583 #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
nikcleju@2 584 #
nikcleju@2 585 #totaliter = 0;
nikcleju@2 586 #
nikcleju@2 587 ## Added by Nic
nikcleju@2 588 #if lbiter == 0
nikcleju@2 589 # xp = zeros(size(x0));
nikcleju@2 590 #end
nikcleju@2 591 #
nikcleju@2 592 #for ii = 1:lbiter
nikcleju@2 593 #
nikcleju@2 594 # [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
nikcleju@2 595 # totaliter = totaliter + ntiter;
nikcleju@2 596 #
nikcleju@2 597 # disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
nikcleju@2 598 # ii, sum(abs(xp)), sum(up), tau, totaliter));
nikcleju@2 599 #
nikcleju@2 600 # x = xp;
nikcleju@2 601 # u = up;
nikcleju@2 602 #
nikcleju@2 603 # tau = mu*tau;
nikcleju@2 604 #
nikcleju@2 605 #end
nikcleju@2 606 #
nikcleju@2 607 # End of original Matab code
nikcleju@2 608 #----------------------------
nikcleju@2 609
nikcleju@2 610 #largescale = isa(A,'function_handle');
nikcleju@2 611 if hasattr(A, '__call__'):
nikcleju@2 612 largescale = True
nikcleju@2 613 else:
nikcleju@2 614 largescale = False
nikcleju@2 615
nikcleju@2 616 # if (nargin < 6), lbtol = 1e-3; end
nikcleju@2 617 # if (nargin < 7), mu = 10; end
nikcleju@2 618 # if (nargin < 8), cgtol = 1e-8; end
nikcleju@2 619 # if (nargin < 9), cgmaxiter = 200; end
nikcleju@2 620 # Nic: added them as optional parameteres
nikcleju@2 621
nikcleju@2 622 newtontol = lbtol
nikcleju@2 623 newtonmaxiter = 50
nikcleju@2 624
nikcleju@2 625 #N = length(x0);
nikcleju@2 626 N = x0.size()
nikcleju@2 627
nikcleju@2 628 # starting point --- make sure that it is feasible
nikcleju@2 629 if largescale:
nikcleju@2 630 if np.linalg.norm(A(x0) - b) > epsilon:
nikcleju@2 631 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
nikcleju@2 632 #AAt = @(z) A(At(z));
nikcleju@2 633 AAt = lambda z: A(At(z))
nikcleju@2 634 # TODO: implement cgsolve
nikcleju@2 635 w,cgres,cgiter = cgsolve(AAt, b, cgtol, cgmaxiter, 0)
nikcleju@2 636 if (cgres > 1/2):
nikcleju@2 637 print 'A*At is ill-conditioned: cannot find starting point'
nikcleju@2 638 xp = x0.copy()
nikcleju@2 639 return xp
nikcleju@2 640 #end
nikcleju@2 641 x0 = At(w)
nikcleju@2 642 #end
nikcleju@2 643 else:
nikcleju@2 644 if np.linalg.norm( np.dot(A,x0) - b ) > epsilon:
nikcleju@2 645 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
nikcleju@2 646 #opts.POSDEF = true; opts.SYM = true;
nikcleju@2 647 #[w, hcond] = linsolve(A*A', b, opts);
nikcleju@2 648 #if (hcond < 1e-14)
nikcleju@2 649 # disp('A*At is ill-conditioned: cannot find starting point');
nikcleju@2 650 # xp = x0;
nikcleju@2 651 # return;
nikcleju@2 652 #end
nikcleju@2 653 try:
nikcleju@2 654 w = scipy.linalg.solve(np.dot(A,A.T), b, sym_pos=True)
nikcleju@2 655 hcond = 1.0/scipy.linalg.cond(np.dot(A,A.T))
nikcleju@2 656 except scipy.linalg.LinAlgError:
nikcleju@2 657 print 'A*At is ill-conditioned: cannot find starting point'
nikcleju@2 658 xp = x0.copy()
nikcleju@2 659 return xp
nikcleju@2 660 if hcond < 1e-14:
nikcleju@2 661 print 'A*At is ill-conditioned: cannot find starting point'
nikcleju@2 662 xp = x0.copy()
nikcleju@2 663 return xp
nikcleju@2 664 #x0 = A'*w;
nikcleju@2 665 x0 = np.dot(A.T, w)
nikcleju@2 666 #end
nikcleju@2 667 #end
nikcleju@2 668 x = x0.copy()
nikcleju@2 669 u = (0.95)*np.abs(x0) + (0.10)*np.abs(x0).max()
nikcleju@2 670
nikcleju@2 671 #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
nikcleju@2 672 print 'Original l1 norm = ',np.abs(x0).sum(),'original functional = ',u.sum()
nikcleju@2 673
nikcleju@2 674 # choose initial value of tau so that the duality gap after the first
nikcleju@2 675 # step will be about the origial norm
nikcleju@2 676 tau = max(((2*N+1)/np.abs(x0).sum()), 1)
nikcleju@2 677
nikcleju@2 678 lbiter = math.ceil((math.log(2*N+1)-math.log(lbtol)-math.log(tau))/math.log(mu))
nikcleju@2 679 #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
nikcleju@2 680 print 'Number of log barrier iterations = ',lbiter
nikcleju@2 681
nikcleju@2 682 totaliter = 0
nikcleju@2 683
nikcleju@2 684 # Added by Nic, to fix some crashing
nikcleju@2 685 if lbiter == 0:
nikcleju@2 686 xp = np.zeros(x0.size)
nikcleju@2 687 #end
nikcleju@2 688
nikcleju@2 689 #for ii = 1:lbiter
nikcleju@2 690 for ii in np.arange(lbiter):
nikcleju@2 691
nikcleju@2 692 xp,up,ntiter = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
nikcleju@2 693 totaliter = totaliter + ntiter
nikcleju@2 694
nikcleju@2 695 #disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
nikcleju@2 696 # ii, sum(abs(xp)), sum(up), tau, totaliter));
nikcleju@2 697 print 'Log barrier iter = ',ii,', l1 = ',np.abs(xp).sum(),', functional = ',up.sum(),', tau = ',tau,', total newton iter = ',totaliter
nikcleju@2 698 x = xp.copy()
nikcleju@2 699 u = up.copy()
nikcleju@2 700
nikcleju@2 701 tau = mu*tau
nikcleju@2 702
nikcleju@2 703 #end
nikcleju@2 704 return xp
nikcleju@2 705