yading@10: /* yading@10: * AAC encoder psychoacoustic model yading@10: * Copyright (C) 2008 Konstantin Shishkov yading@10: * yading@10: * This file is part of FFmpeg. yading@10: * yading@10: * FFmpeg is free software; you can redistribute it and/or yading@10: * modify it under the terms of the GNU Lesser General Public yading@10: * License as published by the Free Software Foundation; either yading@10: * version 2.1 of the License, or (at your option) any later version. yading@10: * yading@10: * FFmpeg is distributed in the hope that it will be useful, yading@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of yading@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU yading@10: * Lesser General Public License for more details. yading@10: * yading@10: * You should have received a copy of the GNU Lesser General Public yading@10: * License along with FFmpeg; if not, write to the Free Software yading@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA yading@10: */ yading@10: yading@10: /** yading@10: * @file yading@10: * AAC encoder psychoacoustic model yading@10: */ yading@10: yading@10: #include "libavutil/libm.h" yading@10: yading@10: #include "avcodec.h" yading@10: #include "aactab.h" yading@10: #include "psymodel.h" yading@10: yading@10: /*********************************** yading@10: * TODOs: yading@10: * try other bitrate controlling mechanism (maybe use ratecontrol.c?) yading@10: * control quality for quality-based output yading@10: **********************************/ yading@10: yading@10: /** yading@10: * constants for 3GPP AAC psychoacoustic model yading@10: * @{ yading@10: */ yading@10: #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) yading@10: #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) yading@10: /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ yading@10: #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f yading@10: /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ yading@10: #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f yading@10: /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ yading@10: #define PSY_3GPP_EN_SPREAD_HI_S 1.5f yading@10: /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ yading@10: #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f yading@10: /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ yading@10: #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f yading@10: yading@10: #define PSY_3GPP_RPEMIN 0.01f yading@10: #define PSY_3GPP_RPELEV 2.0f yading@10: yading@10: #define PSY_3GPP_C1 3.0f /* log2(8) */ yading@10: #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ yading@10: #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ yading@10: yading@10: #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ yading@10: #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ yading@10: yading@10: #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f yading@10: #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f yading@10: #define PSY_3GPP_SAVE_ADD_L -0.84285712f yading@10: #define PSY_3GPP_SAVE_ADD_S -0.75f yading@10: #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f yading@10: #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f yading@10: #define PSY_3GPP_SPEND_ADD_L -0.35f yading@10: #define PSY_3GPP_SPEND_ADD_S -0.26111111f yading@10: #define PSY_3GPP_CLIP_LO_L 0.2f yading@10: #define PSY_3GPP_CLIP_LO_S 0.2f yading@10: #define PSY_3GPP_CLIP_HI_L 0.95f yading@10: #define PSY_3GPP_CLIP_HI_S 0.75f yading@10: yading@10: #define PSY_3GPP_AH_THR_LONG 0.5f yading@10: #define PSY_3GPP_AH_THR_SHORT 0.63f yading@10: yading@10: enum { yading@10: PSY_3GPP_AH_NONE, yading@10: PSY_3GPP_AH_INACTIVE, yading@10: PSY_3GPP_AH_ACTIVE yading@10: }; yading@10: yading@10: #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) yading@10: yading@10: /* LAME psy model constants */ yading@10: #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order yading@10: #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size yading@10: #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size yading@10: #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence yading@10: #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block yading@10: yading@10: /** yading@10: * @} yading@10: */ yading@10: yading@10: /** yading@10: * information for single band used by 3GPP TS26.403-inspired psychoacoustic model yading@10: */ yading@10: typedef struct AacPsyBand{ yading@10: float energy; ///< band energy yading@10: float thr; ///< energy threshold yading@10: float thr_quiet; ///< threshold in quiet yading@10: float nz_lines; ///< number of non-zero spectral lines yading@10: float active_lines; ///< number of active spectral lines yading@10: float pe; ///< perceptual entropy yading@10: float pe_const; ///< constant part of the PE calculation yading@10: float norm_fac; ///< normalization factor for linearization yading@10: int avoid_holes; ///< hole avoidance flag yading@10: }AacPsyBand; yading@10: yading@10: /** yading@10: * single/pair channel context for psychoacoustic model yading@10: */ yading@10: typedef struct AacPsyChannel{ yading@10: AacPsyBand band[128]; ///< bands information yading@10: AacPsyBand prev_band[128]; ///< bands information from the previous frame yading@10: yading@10: float win_energy; ///< sliding average of channel energy yading@10: float iir_state[2]; ///< hi-pass IIR filter state yading@10: uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) yading@10: enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame yading@10: /* LAME psy model specific members */ yading@10: float attack_threshold; ///< attack threshold for this channel yading@10: float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; yading@10: int prev_attack; ///< attack value for the last short block in the previous sequence yading@10: }AacPsyChannel; yading@10: yading@10: /** yading@10: * psychoacoustic model frame type-dependent coefficients yading@10: */ yading@10: typedef struct AacPsyCoeffs{ yading@10: float ath; ///< absolute threshold of hearing per bands yading@10: float barks; ///< Bark value for each spectral band in long frame yading@10: float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame yading@10: float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame yading@10: float min_snr; ///< minimal SNR yading@10: }AacPsyCoeffs; yading@10: yading@10: /** yading@10: * 3GPP TS26.403-inspired psychoacoustic model specific data yading@10: */ yading@10: typedef struct AacPsyContext{ yading@10: int chan_bitrate; ///< bitrate per channel yading@10: int frame_bits; ///< average bits per frame yading@10: int fill_level; ///< bit reservoir fill level yading@10: struct { yading@10: float min; ///< minimum allowed PE for bit factor calculation yading@10: float max; ///< maximum allowed PE for bit factor calculation yading@10: float previous; ///< allowed PE of the previous frame yading@10: float correction; ///< PE correction factor yading@10: } pe; yading@10: AacPsyCoeffs psy_coef[2][64]; yading@10: AacPsyChannel *ch; yading@10: }AacPsyContext; yading@10: yading@10: /** yading@10: * LAME psy model preset struct yading@10: */ yading@10: typedef struct { yading@10: int quality; ///< Quality to map the rest of the vaules to. yading@10: /* This is overloaded to be both kbps per channel in ABR mode, and yading@10: * requested quality in constant quality mode. yading@10: */ yading@10: float st_lrm; ///< short threshold for L, R, and M channels yading@10: } PsyLamePreset; yading@10: yading@10: /** yading@10: * LAME psy model preset table for ABR yading@10: */ yading@10: static const PsyLamePreset psy_abr_map[] = { yading@10: /* TODO: Tuning. These were taken from LAME. */ yading@10: /* kbps/ch st_lrm */ yading@10: { 8, 6.60}, yading@10: { 16, 6.60}, yading@10: { 24, 6.60}, yading@10: { 32, 6.60}, yading@10: { 40, 6.60}, yading@10: { 48, 6.60}, yading@10: { 56, 6.60}, yading@10: { 64, 6.40}, yading@10: { 80, 6.00}, yading@10: { 96, 5.60}, yading@10: {112, 5.20}, yading@10: {128, 5.20}, yading@10: {160, 5.20} yading@10: }; yading@10: yading@10: /** yading@10: * LAME psy model preset table for constant quality yading@10: */ yading@10: static const PsyLamePreset psy_vbr_map[] = { yading@10: /* vbr_q st_lrm */ yading@10: { 0, 4.20}, yading@10: { 1, 4.20}, yading@10: { 2, 4.20}, yading@10: { 3, 4.20}, yading@10: { 4, 4.20}, yading@10: { 5, 4.20}, yading@10: { 6, 4.20}, yading@10: { 7, 4.20}, yading@10: { 8, 4.20}, yading@10: { 9, 4.20}, yading@10: {10, 4.20} yading@10: }; yading@10: yading@10: /** yading@10: * LAME psy model FIR coefficient table yading@10: */ yading@10: static const float psy_fir_coeffs[] = { yading@10: -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, yading@10: -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, yading@10: -5.52212e-17 * 2, -0.313819 * 2 yading@10: }; yading@10: yading@10: #if ARCH_MIPS yading@10: # include "mips/aacpsy_mips.h" yading@10: #endif /* ARCH_MIPS */ yading@10: yading@10: /** yading@10: * Calculate the ABR attack threshold from the above LAME psymodel table. yading@10: */ yading@10: static float lame_calc_attack_threshold(int bitrate) yading@10: { yading@10: /* Assume max bitrate to start with */ yading@10: int lower_range = 12, upper_range = 12; yading@10: int lower_range_kbps = psy_abr_map[12].quality; yading@10: int upper_range_kbps = psy_abr_map[12].quality; yading@10: int i; yading@10: yading@10: /* Determine which bitrates the value specified falls between. yading@10: * If the loop ends without breaking our above assumption of 320kbps was correct. yading@10: */ yading@10: for (i = 1; i < 13; i++) { yading@10: if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { yading@10: upper_range = i; yading@10: upper_range_kbps = psy_abr_map[i ].quality; yading@10: lower_range = i - 1; yading@10: lower_range_kbps = psy_abr_map[i - 1].quality; yading@10: break; /* Upper range found */ yading@10: } yading@10: } yading@10: yading@10: /* Determine which range the value specified is closer to */ yading@10: if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) yading@10: return psy_abr_map[lower_range].st_lrm; yading@10: return psy_abr_map[upper_range].st_lrm; yading@10: } yading@10: yading@10: /** yading@10: * LAME psy model specific initialization yading@10: */ yading@10: static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) { yading@10: int i, j; yading@10: yading@10: for (i = 0; i < avctx->channels; i++) { yading@10: AacPsyChannel *pch = &ctx->ch[i]; yading@10: yading@10: if (avctx->flags & CODEC_FLAG_QSCALE) yading@10: pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; yading@10: else yading@10: pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); yading@10: yading@10: for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) yading@10: pch->prev_energy_subshort[j] = 10.0f; yading@10: } yading@10: } yading@10: yading@10: /** yading@10: * Calculate Bark value for given line. yading@10: */ yading@10: static av_cold float calc_bark(float f) yading@10: { yading@10: return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); yading@10: } yading@10: yading@10: #define ATH_ADD 4 yading@10: /** yading@10: * Calculate ATH value for given frequency. yading@10: * Borrowed from Lame. yading@10: */ yading@10: static av_cold float ath(float f, float add) yading@10: { yading@10: f /= 1000.0f; yading@10: return 3.64 * pow(f, -0.8) yading@10: - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) yading@10: + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) yading@10: + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; yading@10: } yading@10: yading@10: static av_cold int psy_3gpp_init(FFPsyContext *ctx) { yading@10: AacPsyContext *pctx; yading@10: float bark; yading@10: int i, j, g, start; yading@10: float prev, minscale, minath, minsnr, pe_min; yading@10: const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels; yading@10: const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx); yading@10: const float num_bark = calc_bark((float)bandwidth); yading@10: yading@10: ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); yading@10: pctx = (AacPsyContext*) ctx->model_priv_data; yading@10: yading@10: pctx->chan_bitrate = chan_bitrate; yading@10: pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate; yading@10: pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); yading@10: pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); yading@10: ctx->bitres.size = 6144 - pctx->frame_bits; yading@10: ctx->bitres.size -= ctx->bitres.size % 8; yading@10: pctx->fill_level = ctx->bitres.size; yading@10: minath = ath(3410, ATH_ADD); yading@10: for (j = 0; j < 2; j++) { yading@10: AacPsyCoeffs *coeffs = pctx->psy_coef[j]; yading@10: const uint8_t *band_sizes = ctx->bands[j]; yading@10: float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); yading@10: float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f); yading@10: /* reference encoder uses 2.4% here instead of 60% like the spec says */ yading@10: float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; yading@10: float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; yading@10: /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ yading@10: float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; yading@10: yading@10: i = 0; yading@10: prev = 0.0; yading@10: for (g = 0; g < ctx->num_bands[j]; g++) { yading@10: i += band_sizes[g]; yading@10: bark = calc_bark((i-1) * line_to_frequency); yading@10: coeffs[g].barks = (bark + prev) / 2.0; yading@10: prev = bark; yading@10: } yading@10: for (g = 0; g < ctx->num_bands[j] - 1; g++) { yading@10: AacPsyCoeffs *coeff = &coeffs[g]; yading@10: float bark_width = coeffs[g+1].barks - coeffs->barks; yading@10: coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW); yading@10: coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI); yading@10: coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low); yading@10: coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi); yading@10: pe_min = bark_pe * bark_width; yading@10: minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; yading@10: coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); yading@10: } yading@10: start = 0; yading@10: for (g = 0; g < ctx->num_bands[j]; g++) { yading@10: minscale = ath(start * line_to_frequency, ATH_ADD); yading@10: for (i = 1; i < band_sizes[g]; i++) yading@10: minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); yading@10: coeffs[g].ath = minscale - minath; yading@10: start += band_sizes[g]; yading@10: } yading@10: } yading@10: yading@10: pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels); yading@10: yading@10: lame_window_init(pctx, ctx->avctx); yading@10: yading@10: return 0; yading@10: } yading@10: yading@10: /** yading@10: * IIR filter used in block switching decision yading@10: */ yading@10: static float iir_filter(int in, float state[2]) yading@10: { yading@10: float ret; yading@10: yading@10: ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; yading@10: state[0] = in; yading@10: state[1] = ret; yading@10: return ret; yading@10: } yading@10: yading@10: /** yading@10: * window grouping information stored as bits (0 - new group, 1 - group continues) yading@10: */ yading@10: static const uint8_t window_grouping[9] = { yading@10: 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 yading@10: }; yading@10: yading@10: /** yading@10: * Tell encoder which window types to use. yading@10: * @see 3GPP TS26.403 5.4.1 "Blockswitching" yading@10: */ yading@10: static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, yading@10: const int16_t *audio, yading@10: const int16_t *la, yading@10: int channel, int prev_type) yading@10: { yading@10: int i, j; yading@10: int br = ctx->avctx->bit_rate / ctx->avctx->channels; yading@10: int attack_ratio = br <= 16000 ? 18 : 10; yading@10: AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; yading@10: AacPsyChannel *pch = &pctx->ch[channel]; yading@10: uint8_t grouping = 0; yading@10: int next_type = pch->next_window_seq; yading@10: FFPsyWindowInfo wi = { { 0 } }; yading@10: yading@10: if (la) { yading@10: float s[8], v; yading@10: int switch_to_eight = 0; yading@10: float sum = 0.0, sum2 = 0.0; yading@10: int attack_n = 0; yading@10: int stay_short = 0; yading@10: for (i = 0; i < 8; i++) { yading@10: for (j = 0; j < 128; j++) { yading@10: v = iir_filter(la[i*128+j], pch->iir_state); yading@10: sum += v*v; yading@10: } yading@10: s[i] = sum; yading@10: sum2 += sum; yading@10: } yading@10: for (i = 0; i < 8; i++) { yading@10: if (s[i] > pch->win_energy * attack_ratio) { yading@10: attack_n = i + 1; yading@10: switch_to_eight = 1; yading@10: break; yading@10: } yading@10: } yading@10: pch->win_energy = pch->win_energy*7/8 + sum2/64; yading@10: yading@10: wi.window_type[1] = prev_type; yading@10: switch (prev_type) { yading@10: case ONLY_LONG_SEQUENCE: yading@10: wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; yading@10: next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; yading@10: break; yading@10: case LONG_START_SEQUENCE: yading@10: wi.window_type[0] = EIGHT_SHORT_SEQUENCE; yading@10: grouping = pch->next_grouping; yading@10: next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; yading@10: break; yading@10: case LONG_STOP_SEQUENCE: yading@10: wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; yading@10: next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; yading@10: break; yading@10: case EIGHT_SHORT_SEQUENCE: yading@10: stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; yading@10: wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; yading@10: grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; yading@10: next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; yading@10: break; yading@10: } yading@10: yading@10: pch->next_grouping = window_grouping[attack_n]; yading@10: pch->next_window_seq = next_type; yading@10: } else { yading@10: for (i = 0; i < 3; i++) yading@10: wi.window_type[i] = prev_type; yading@10: grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; yading@10: } yading@10: yading@10: wi.window_shape = 1; yading@10: if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { yading@10: wi.num_windows = 1; yading@10: wi.grouping[0] = 1; yading@10: } else { yading@10: int lastgrp = 0; yading@10: wi.num_windows = 8; yading@10: for (i = 0; i < 8; i++) { yading@10: if (!((grouping >> i) & 1)) yading@10: lastgrp = i; yading@10: wi.grouping[lastgrp]++; yading@10: } yading@10: } yading@10: yading@10: return wi; yading@10: } yading@10: yading@10: /* 5.6.1.2 "Calculation of Bit Demand" */ yading@10: static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, yading@10: int short_window) yading@10: { yading@10: const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; yading@10: const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; yading@10: const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; yading@10: const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; yading@10: const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; yading@10: const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; yading@10: float clipped_pe, bit_save, bit_spend, bit_factor, fill_level; yading@10: yading@10: ctx->fill_level += ctx->frame_bits - bits; yading@10: ctx->fill_level = av_clip(ctx->fill_level, 0, size); yading@10: fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); yading@10: clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); yading@10: bit_save = (fill_level + bitsave_add) * bitsave_slope; yading@10: assert(bit_save <= 0.3f && bit_save >= -0.05000001f); yading@10: bit_spend = (fill_level + bitspend_add) * bitspend_slope; yading@10: assert(bit_spend <= 0.5f && bit_spend >= -0.1f); yading@10: /* The bit factor graph in the spec is obviously incorrect. yading@10: * bit_spend + ((bit_spend - bit_spend))... yading@10: * The reference encoder subtracts everything from 1, but also seems incorrect. yading@10: * 1 - bit_save + ((bit_spend + bit_save))... yading@10: * Hopefully below is correct. yading@10: */ yading@10: bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); yading@10: /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */ yading@10: ctx->pe.max = FFMAX(pe, ctx->pe.max); yading@10: ctx->pe.min = FFMIN(pe, ctx->pe.min); yading@10: yading@10: return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits); yading@10: } yading@10: yading@10: static float calc_pe_3gpp(AacPsyBand *band) yading@10: { yading@10: float pe, a; yading@10: yading@10: band->pe = 0.0f; yading@10: band->pe_const = 0.0f; yading@10: band->active_lines = 0.0f; yading@10: if (band->energy > band->thr) { yading@10: a = log2f(band->energy); yading@10: pe = a - log2f(band->thr); yading@10: band->active_lines = band->nz_lines; yading@10: if (pe < PSY_3GPP_C1) { yading@10: pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; yading@10: a = a * PSY_3GPP_C3 + PSY_3GPP_C2; yading@10: band->active_lines *= PSY_3GPP_C3; yading@10: } yading@10: band->pe = pe * band->nz_lines; yading@10: band->pe_const = a * band->nz_lines; yading@10: } yading@10: yading@10: return band->pe; yading@10: } yading@10: yading@10: static float calc_reduction_3gpp(float a, float desired_pe, float pe, yading@10: float active_lines) yading@10: { yading@10: float thr_avg, reduction; yading@10: yading@10: if(active_lines == 0.0) yading@10: return 0; yading@10: yading@10: thr_avg = exp2f((a - pe) / (4.0f * active_lines)); yading@10: reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; yading@10: yading@10: return FFMAX(reduction, 0.0f); yading@10: } yading@10: yading@10: static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, yading@10: float reduction) yading@10: { yading@10: float thr = band->thr; yading@10: yading@10: if (band->energy > thr) { yading@10: thr = sqrtf(thr); yading@10: thr = sqrtf(thr) + reduction; yading@10: thr *= thr; yading@10: thr *= thr; yading@10: yading@10: /* This deviates from the 3GPP spec to match the reference encoder. yading@10: * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands yading@10: * that have hole avoidance on (active or inactive). It always reduces the yading@10: * threshold of bands with hole avoidance off. yading@10: */ yading@10: if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { yading@10: thr = FFMAX(band->thr, band->energy * min_snr); yading@10: band->avoid_holes = PSY_3GPP_AH_ACTIVE; yading@10: } yading@10: } yading@10: yading@10: return thr; yading@10: } yading@10: yading@10: #ifndef calc_thr_3gpp yading@10: static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, yading@10: const uint8_t *band_sizes, const float *coefs) yading@10: { yading@10: int i, w, g; yading@10: int start = 0; yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: yading@10: float form_factor = 0.0f; yading@10: float Temp; yading@10: band->energy = 0.0f; yading@10: for (i = 0; i < band_sizes[g]; i++) { yading@10: band->energy += coefs[start+i] * coefs[start+i]; yading@10: form_factor += sqrtf(fabs(coefs[start+i])); yading@10: } yading@10: Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; yading@10: band->thr = band->energy * 0.001258925f; yading@10: band->nz_lines = form_factor * sqrtf(Temp); yading@10: yading@10: start += band_sizes[g]; yading@10: } yading@10: } yading@10: } yading@10: #endif /* calc_thr_3gpp */ yading@10: yading@10: #ifndef psy_hp_filter yading@10: static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) yading@10: { yading@10: int i, j; yading@10: for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { yading@10: float sum1, sum2; yading@10: sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; yading@10: sum2 = 0.0; yading@10: for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { yading@10: sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); yading@10: sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); yading@10: } yading@10: /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. Tuning this for normalized floats would be difficult. */ yading@10: hpfsmpl[i] = (sum1 + sum2) * 32768.0f; yading@10: } yading@10: } yading@10: #endif /* psy_hp_filter */ yading@10: yading@10: /** yading@10: * Calculate band thresholds as suggested in 3GPP TS26.403 yading@10: */ yading@10: static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, yading@10: const float *coefs, const FFPsyWindowInfo *wi) yading@10: { yading@10: AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; yading@10: AacPsyChannel *pch = &pctx->ch[channel]; yading@10: int i, w, g; yading@10: float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; yading@10: float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; yading@10: float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); yading@10: const int num_bands = ctx->num_bands[wi->num_windows == 8]; yading@10: const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; yading@10: AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; yading@10: const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; yading@10: yading@10: //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" yading@10: calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs); yading@10: yading@10: //modify thresholds and energies - spread, threshold in quiet, pre-echo control yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: AacPsyBand *bands = &pch->band[w]; yading@10: yading@10: /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ yading@10: spread_en[0] = bands[0].energy; yading@10: for (g = 1; g < num_bands; g++) { yading@10: bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); yading@10: spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); yading@10: } yading@10: for (g = num_bands - 2; g >= 0; g--) { yading@10: bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); yading@10: spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); yading@10: } yading@10: //5.4.2.4 "Threshold in quiet" yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &bands[g]; yading@10: yading@10: band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); yading@10: //5.4.2.5 "Pre-echo control" yading@10: if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) yading@10: band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, yading@10: PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); yading@10: yading@10: /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ yading@10: pe += calc_pe_3gpp(band); yading@10: a += band->pe_const; yading@10: active_lines += band->active_lines; yading@10: yading@10: /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ yading@10: if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) yading@10: band->avoid_holes = PSY_3GPP_AH_NONE; yading@10: else yading@10: band->avoid_holes = PSY_3GPP_AH_INACTIVE; yading@10: } yading@10: } yading@10: yading@10: /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ yading@10: ctx->ch[channel].entropy = pe; yading@10: desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); yading@10: desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); yading@10: /* NOTE: PE correction is kept simple. During initial testing it had very yading@10: * little effect on the final bitrate. Probably a good idea to come yading@10: * back and do more testing later. yading@10: */ yading@10: if (ctx->bitres.bits > 0) yading@10: desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), yading@10: 0.85f, 1.15f); yading@10: pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); yading@10: yading@10: if (desired_pe < pe) { yading@10: /* 5.6.1.3.4 "First Estimation of the reduction value" */ yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); yading@10: pe = 0.0f; yading@10: a = 0.0f; yading@10: active_lines = 0.0f; yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: yading@10: band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); yading@10: /* recalculate PE */ yading@10: pe += calc_pe_3gpp(band); yading@10: a += band->pe_const; yading@10: active_lines += band->active_lines; yading@10: } yading@10: } yading@10: yading@10: /* 5.6.1.3.5 "Second Estimation of the reduction value" */ yading@10: for (i = 0; i < 2; i++) { yading@10: float pe_no_ah = 0.0f, desired_pe_no_ah; yading@10: active_lines = a = 0.0f; yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: yading@10: if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { yading@10: pe_no_ah += band->pe; yading@10: a += band->pe_const; yading@10: active_lines += band->active_lines; yading@10: } yading@10: } yading@10: } yading@10: desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); yading@10: if (active_lines > 0.0f) yading@10: reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); yading@10: yading@10: pe = 0.0f; yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: yading@10: if (active_lines > 0.0f) yading@10: band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); yading@10: pe += calc_pe_3gpp(band); yading@10: band->norm_fac = band->active_lines / band->thr; yading@10: norm_fac += band->norm_fac; yading@10: } yading@10: } yading@10: delta_pe = desired_pe - pe; yading@10: if (fabs(delta_pe) > 0.05f * desired_pe) yading@10: break; yading@10: } yading@10: yading@10: if (pe < 1.15f * desired_pe) { yading@10: /* 6.6.1.3.6 "Final threshold modification by linearization" */ yading@10: norm_fac = 1.0f / norm_fac; yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: yading@10: if (band->active_lines > 0.5f) { yading@10: float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; yading@10: float thr = band->thr; yading@10: yading@10: thr *= exp2f(delta_sfb_pe / band->active_lines); yading@10: if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) yading@10: thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); yading@10: band->thr = thr; yading@10: } yading@10: } yading@10: } yading@10: } else { yading@10: /* 5.6.1.3.7 "Further perceptual entropy reduction" */ yading@10: g = num_bands; yading@10: while (pe > desired_pe && g--) { yading@10: for (w = 0; w < wi->num_windows*16; w+= 16) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { yading@10: coeffs[g].min_snr = PSY_SNR_1DB; yading@10: band->thr = band->energy * PSY_SNR_1DB; yading@10: pe += band->active_lines * 1.5f - band->pe; yading@10: } yading@10: } yading@10: } yading@10: /* TODO: allow more holes (unused without mid/side) */ yading@10: } yading@10: } yading@10: yading@10: for (w = 0; w < wi->num_windows*16; w += 16) { yading@10: for (g = 0; g < num_bands; g++) { yading@10: AacPsyBand *band = &pch->band[w+g]; yading@10: FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; yading@10: yading@10: psy_band->threshold = band->thr; yading@10: psy_band->energy = band->energy; yading@10: } yading@10: } yading@10: yading@10: memcpy(pch->prev_band, pch->band, sizeof(pch->band)); yading@10: } yading@10: yading@10: static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, yading@10: const float **coeffs, const FFPsyWindowInfo *wi) yading@10: { yading@10: int ch; yading@10: FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); yading@10: yading@10: for (ch = 0; ch < group->num_ch; ch++) yading@10: psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); yading@10: } yading@10: yading@10: static av_cold void psy_3gpp_end(FFPsyContext *apc) yading@10: { yading@10: AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; yading@10: av_freep(&pctx->ch); yading@10: av_freep(&apc->model_priv_data); yading@10: } yading@10: yading@10: static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) yading@10: { yading@10: int blocktype = ONLY_LONG_SEQUENCE; yading@10: if (uselongblock) { yading@10: if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) yading@10: blocktype = LONG_STOP_SEQUENCE; yading@10: } else { yading@10: blocktype = EIGHT_SHORT_SEQUENCE; yading@10: if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) yading@10: ctx->next_window_seq = LONG_START_SEQUENCE; yading@10: if (ctx->next_window_seq == LONG_STOP_SEQUENCE) yading@10: ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; yading@10: } yading@10: yading@10: wi->window_type[0] = ctx->next_window_seq; yading@10: ctx->next_window_seq = blocktype; yading@10: } yading@10: yading@10: static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, yading@10: const float *la, int channel, int prev_type) yading@10: { yading@10: AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; yading@10: AacPsyChannel *pch = &pctx->ch[channel]; yading@10: int grouping = 0; yading@10: int uselongblock = 1; yading@10: int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; yading@10: int i; yading@10: FFPsyWindowInfo wi = { { 0 } }; yading@10: yading@10: if (la) { yading@10: float hpfsmpl[AAC_BLOCK_SIZE_LONG]; yading@10: float const *pf = hpfsmpl; yading@10: float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; yading@10: float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; yading@10: float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; yading@10: const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); yading@10: int att_sum = 0; yading@10: yading@10: /* LAME comment: apply high pass filter of fs/4 */ yading@10: psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); yading@10: yading@10: /* Calculate the energies of each sub-shortblock */ yading@10: for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { yading@10: energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; yading@10: assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); yading@10: attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; yading@10: energy_short[0] += energy_subshort[i]; yading@10: } yading@10: yading@10: for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { yading@10: float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); yading@10: float p = 1.0f; yading@10: for (; pf < pfe; pf++) yading@10: p = FFMAX(p, fabsf(*pf)); yading@10: pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; yading@10: energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; yading@10: /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. yading@10: * Obviously the 3 and 2 have some significance, or this would be just [i + 1] yading@10: * (which is what we use here). What the 3 stands for is ambiguous, as it is both yading@10: * number of short blocks, and the number of sub-short blocks. yading@10: * It seems that LAME is comparing each sub-block to sub-block + 1 in the yading@10: * previous block. yading@10: */ yading@10: if (p > energy_subshort[i + 1]) yading@10: p = p / energy_subshort[i + 1]; yading@10: else if (energy_subshort[i + 1] > p * 10.0f) yading@10: p = energy_subshort[i + 1] / (p * 10.0f); yading@10: else yading@10: p = 0.0; yading@10: attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; yading@10: } yading@10: yading@10: /* compare energy between sub-short blocks */ yading@10: for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) yading@10: if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) yading@10: if (attack_intensity[i] > pch->attack_threshold) yading@10: attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; yading@10: yading@10: /* should have energy change between short blocks, in order to avoid periodic signals */ yading@10: /* Good samples to show the effect are Trumpet test songs */ yading@10: /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ yading@10: /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ yading@10: for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { yading@10: float const u = energy_short[i - 1]; yading@10: float const v = energy_short[i]; yading@10: float const m = FFMAX(u, v); yading@10: if (m < 40000) { /* (2) */ yading@10: if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ yading@10: if (i == 1 && attacks[0] < attacks[i]) yading@10: attacks[0] = 0; yading@10: attacks[i] = 0; yading@10: } yading@10: } yading@10: att_sum += attacks[i]; yading@10: } yading@10: yading@10: if (attacks[0] <= pch->prev_attack) yading@10: attacks[0] = 0; yading@10: yading@10: att_sum += attacks[0]; yading@10: /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ yading@10: if (pch->prev_attack == 3 || att_sum) { yading@10: uselongblock = 0; yading@10: yading@10: for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) yading@10: if (attacks[i] && attacks[i-1]) yading@10: attacks[i] = 0; yading@10: } yading@10: } else { yading@10: /* We have no lookahead info, so just use same type as the previous sequence. */ yading@10: uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); yading@10: } yading@10: yading@10: lame_apply_block_type(pch, &wi, uselongblock); yading@10: yading@10: wi.window_type[1] = prev_type; yading@10: if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { yading@10: wi.num_windows = 1; yading@10: wi.grouping[0] = 1; yading@10: if (wi.window_type[0] == LONG_START_SEQUENCE) yading@10: wi.window_shape = 0; yading@10: else yading@10: wi.window_shape = 1; yading@10: } else { yading@10: int lastgrp = 0; yading@10: yading@10: wi.num_windows = 8; yading@10: wi.window_shape = 0; yading@10: for (i = 0; i < 8; i++) { yading@10: if (!((pch->next_grouping >> i) & 1)) yading@10: lastgrp = i; yading@10: wi.grouping[lastgrp]++; yading@10: } yading@10: } yading@10: yading@10: /* Determine grouping, based on the location of the first attack, and save for yading@10: * the next frame. yading@10: * FIXME: Move this to analysis. yading@10: * TODO: Tune groupings depending on attack location yading@10: * TODO: Handle more than one attack in a group yading@10: */ yading@10: for (i = 0; i < 9; i++) { yading@10: if (attacks[i]) { yading@10: grouping = i; yading@10: break; yading@10: } yading@10: } yading@10: pch->next_grouping = window_grouping[grouping]; yading@10: yading@10: pch->prev_attack = attacks[8]; yading@10: yading@10: return wi; yading@10: } yading@10: yading@10: const FFPsyModel ff_aac_psy_model = yading@10: { yading@10: .name = "3GPP TS 26.403-inspired model", yading@10: .init = psy_3gpp_init, yading@10: .window = psy_lame_window, yading@10: .analyze = psy_3gpp_analyze, yading@10: .end = psy_3gpp_end, yading@10: };