yading@10: /* yading@10: * Real Audio 1.0 (14.4K) encoder yading@10: * Copyright (c) 2010 Francesco Lavra yading@10: * yading@10: * This file is part of FFmpeg. yading@10: * yading@10: * FFmpeg is free software; you can redistribute it and/or yading@10: * modify it under the terms of the GNU Lesser General Public yading@10: * License as published by the Free Software Foundation; either yading@10: * version 2.1 of the License, or (at your option) any later version. yading@10: * yading@10: * FFmpeg is distributed in the hope that it will be useful, yading@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of yading@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU yading@10: * Lesser General Public License for more details. yading@10: * yading@10: * You should have received a copy of the GNU Lesser General Public yading@10: * License along with FFmpeg; if not, write to the Free Software yading@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA yading@10: */ yading@10: yading@10: /** yading@10: * @file yading@10: * Real Audio 1.0 (14.4K) encoder yading@10: * @author Francesco Lavra yading@10: */ yading@10: yading@10: #include yading@10: yading@10: #include "avcodec.h" yading@10: #include "audio_frame_queue.h" yading@10: #include "internal.h" yading@10: #include "put_bits.h" yading@10: #include "celp_filters.h" yading@10: #include "ra144.h" yading@10: yading@10: yading@10: static av_cold int ra144_encode_close(AVCodecContext *avctx) yading@10: { yading@10: RA144Context *ractx = avctx->priv_data; yading@10: ff_lpc_end(&ractx->lpc_ctx); yading@10: ff_af_queue_close(&ractx->afq); yading@10: return 0; yading@10: } yading@10: yading@10: yading@10: static av_cold int ra144_encode_init(AVCodecContext * avctx) yading@10: { yading@10: RA144Context *ractx; yading@10: int ret; yading@10: yading@10: if (avctx->channels != 1) { yading@10: av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n", yading@10: avctx->channels); yading@10: return -1; yading@10: } yading@10: avctx->frame_size = NBLOCKS * BLOCKSIZE; yading@10: avctx->delay = avctx->frame_size; yading@10: avctx->bit_rate = 8000; yading@10: ractx = avctx->priv_data; yading@10: ractx->lpc_coef[0] = ractx->lpc_tables[0]; yading@10: ractx->lpc_coef[1] = ractx->lpc_tables[1]; yading@10: ractx->avctx = avctx; yading@10: ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER, yading@10: FF_LPC_TYPE_LEVINSON); yading@10: if (ret < 0) yading@10: goto error; yading@10: yading@10: ff_af_queue_init(avctx, &ractx->afq); yading@10: yading@10: return 0; yading@10: error: yading@10: ra144_encode_close(avctx); yading@10: return ret; yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Quantize a value by searching a sorted table for the element with the yading@10: * nearest value yading@10: * yading@10: * @param value value to quantize yading@10: * @param table array containing the quantization table yading@10: * @param size size of the quantization table yading@10: * @return index of the quantization table corresponding to the element with the yading@10: * nearest value yading@10: */ yading@10: static int quantize(int value, const int16_t *table, unsigned int size) yading@10: { yading@10: unsigned int low = 0, high = size - 1; yading@10: yading@10: while (1) { yading@10: int index = (low + high) >> 1; yading@10: int error = table[index] - value; yading@10: yading@10: if (index == low) yading@10: return table[high] + error > value ? low : high; yading@10: if (error > 0) { yading@10: high = index; yading@10: } else { yading@10: low = index; yading@10: } yading@10: } yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Orthogonalize a vector to another vector yading@10: * yading@10: * @param v vector to orthogonalize yading@10: * @param u vector against which orthogonalization is performed yading@10: */ yading@10: static void orthogonalize(float *v, const float *u) yading@10: { yading@10: int i; yading@10: float num = 0, den = 0; yading@10: yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: num += v[i] * u[i]; yading@10: den += u[i] * u[i]; yading@10: } yading@10: num /= den; yading@10: for (i = 0; i < BLOCKSIZE; i++) yading@10: v[i] -= num * u[i]; yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Calculate match score and gain of an LPC-filtered vector with respect to yading@10: * input data, possibly othogonalizing it to up to 2 other vectors yading@10: * yading@10: * @param work array used to calculate the filtered vector yading@10: * @param coefs coefficients of the LPC filter yading@10: * @param vect original vector yading@10: * @param ortho1 first vector against which orthogonalization is performed yading@10: * @param ortho2 second vector against which orthogonalization is performed yading@10: * @param data input data yading@10: * @param score pointer to variable where match score is returned yading@10: * @param gain pointer to variable where gain is returned yading@10: */ yading@10: static void get_match_score(float *work, const float *coefs, float *vect, yading@10: const float *ortho1, const float *ortho2, yading@10: const float *data, float *score, float *gain) yading@10: { yading@10: float c, g; yading@10: int i; yading@10: yading@10: ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); yading@10: if (ortho1) yading@10: orthogonalize(work, ortho1); yading@10: if (ortho2) yading@10: orthogonalize(work, ortho2); yading@10: c = g = 0; yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: g += work[i] * work[i]; yading@10: c += data[i] * work[i]; yading@10: } yading@10: if (c <= 0) { yading@10: *score = 0; yading@10: return; yading@10: } yading@10: *gain = c / g; yading@10: *score = *gain * c; yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Create a vector from the adaptive codebook at a given lag value yading@10: * yading@10: * @param vect array where vector is stored yading@10: * @param cb adaptive codebook yading@10: * @param lag lag value yading@10: */ yading@10: static void create_adapt_vect(float *vect, const int16_t *cb, int lag) yading@10: { yading@10: int i; yading@10: yading@10: cb += BUFFERSIZE - lag; yading@10: for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++) yading@10: vect[i] = cb[i]; yading@10: if (lag < BLOCKSIZE) yading@10: for (i = 0; i < BLOCKSIZE - lag; i++) yading@10: vect[lag + i] = cb[i]; yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Search the adaptive codebook for the best entry and gain and remove its yading@10: * contribution from input data yading@10: * yading@10: * @param adapt_cb array from which the adaptive codebook is extracted yading@10: * @param work array used to calculate LPC-filtered vectors yading@10: * @param coefs coefficients of the LPC filter yading@10: * @param data input data yading@10: * @return index of the best entry of the adaptive codebook yading@10: */ yading@10: static int adaptive_cb_search(const int16_t *adapt_cb, float *work, yading@10: const float *coefs, float *data) yading@10: { yading@10: int i, av_uninit(best_vect); yading@10: float score, gain, best_score, av_uninit(best_gain); yading@10: float exc[BLOCKSIZE]; yading@10: yading@10: gain = best_score = 0; yading@10: for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) { yading@10: create_adapt_vect(exc, adapt_cb, i); yading@10: get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain); yading@10: if (score > best_score) { yading@10: best_score = score; yading@10: best_vect = i; yading@10: best_gain = gain; yading@10: } yading@10: } yading@10: if (!best_score) yading@10: return 0; yading@10: yading@10: /** yading@10: * Re-calculate the filtered vector from the vector with maximum match score yading@10: * and remove its contribution from input data. yading@10: */ yading@10: create_adapt_vect(exc, adapt_cb, best_vect); yading@10: ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER); yading@10: for (i = 0; i < BLOCKSIZE; i++) yading@10: data[i] -= best_gain * work[i]; yading@10: return best_vect - BLOCKSIZE / 2 + 1; yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Find the best vector of a fixed codebook by applying an LPC filter to yading@10: * codebook entries, possibly othogonalizing them to up to 2 other vectors and yading@10: * matching the results with input data yading@10: * yading@10: * @param work array used to calculate the filtered vectors yading@10: * @param coefs coefficients of the LPC filter yading@10: * @param cb fixed codebook yading@10: * @param ortho1 first vector against which orthogonalization is performed yading@10: * @param ortho2 second vector against which orthogonalization is performed yading@10: * @param data input data yading@10: * @param idx pointer to variable where the index of the best codebook entry is yading@10: * returned yading@10: * @param gain pointer to variable where the gain of the best codebook entry is yading@10: * returned yading@10: */ yading@10: static void find_best_vect(float *work, const float *coefs, yading@10: const int8_t cb[][BLOCKSIZE], const float *ortho1, yading@10: const float *ortho2, float *data, int *idx, yading@10: float *gain) yading@10: { yading@10: int i, j; yading@10: float g, score, best_score; yading@10: float vect[BLOCKSIZE]; yading@10: yading@10: *idx = *gain = best_score = 0; yading@10: for (i = 0; i < FIXED_CB_SIZE; i++) { yading@10: for (j = 0; j < BLOCKSIZE; j++) yading@10: vect[j] = cb[i][j]; yading@10: get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g); yading@10: if (score > best_score) { yading@10: best_score = score; yading@10: *idx = i; yading@10: *gain = g; yading@10: } yading@10: } yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Search the two fixed codebooks for the best entry and gain yading@10: * yading@10: * @param work array used to calculate LPC-filtered vectors yading@10: * @param coefs coefficients of the LPC filter yading@10: * @param data input data yading@10: * @param cba_idx index of the best entry of the adaptive codebook yading@10: * @param cb1_idx pointer to variable where the index of the best entry of the yading@10: * first fixed codebook is returned yading@10: * @param cb2_idx pointer to variable where the index of the best entry of the yading@10: * second fixed codebook is returned yading@10: */ yading@10: static void fixed_cb_search(float *work, const float *coefs, float *data, yading@10: int cba_idx, int *cb1_idx, int *cb2_idx) yading@10: { yading@10: int i, ortho_cb1; yading@10: float gain; yading@10: float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE]; yading@10: float vect[BLOCKSIZE]; yading@10: yading@10: /** yading@10: * The filtered vector from the adaptive codebook can be retrieved from yading@10: * work, because this function is called just after adaptive_cb_search(). yading@10: */ yading@10: if (cba_idx) yading@10: memcpy(cba_vect, work, sizeof(cba_vect)); yading@10: yading@10: find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL, yading@10: data, cb1_idx, &gain); yading@10: yading@10: /** yading@10: * Re-calculate the filtered vector from the vector with maximum match score yading@10: * and remove its contribution from input data. yading@10: */ yading@10: if (gain) { yading@10: for (i = 0; i < BLOCKSIZE; i++) yading@10: vect[i] = ff_cb1_vects[*cb1_idx][i]; yading@10: ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); yading@10: if (cba_idx) yading@10: orthogonalize(work, cba_vect); yading@10: for (i = 0; i < BLOCKSIZE; i++) yading@10: data[i] -= gain * work[i]; yading@10: memcpy(cb1_vect, work, sizeof(cb1_vect)); yading@10: ortho_cb1 = 1; yading@10: } else yading@10: ortho_cb1 = 0; yading@10: yading@10: find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL, yading@10: ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain); yading@10: } yading@10: yading@10: yading@10: /** yading@10: * Encode a subblock of the current frame yading@10: * yading@10: * @param ractx encoder context yading@10: * @param sblock_data input data of the subblock yading@10: * @param lpc_coefs coefficients of the LPC filter yading@10: * @param rms RMS of the reflection coefficients yading@10: * @param pb pointer to PutBitContext of the current frame yading@10: */ yading@10: static void ra144_encode_subblock(RA144Context *ractx, yading@10: const int16_t *sblock_data, yading@10: const int16_t *lpc_coefs, unsigned int rms, yading@10: PutBitContext *pb) yading@10: { yading@10: float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE]; yading@10: float coefs[LPC_ORDER]; yading@10: float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE]; yading@10: int16_t cba_vect[BLOCKSIZE]; yading@10: int cba_idx, cb1_idx, cb2_idx, gain; yading@10: int i, n; yading@10: unsigned m[3]; yading@10: float g[3]; yading@10: float error, best_error; yading@10: yading@10: for (i = 0; i < LPC_ORDER; i++) { yading@10: work[i] = ractx->curr_sblock[BLOCKSIZE + i]; yading@10: coefs[i] = lpc_coefs[i] * (1/4096.0); yading@10: } yading@10: yading@10: /** yading@10: * Calculate the zero-input response of the LPC filter and subtract it from yading@10: * input data. yading@10: */ yading@10: ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE, yading@10: LPC_ORDER); yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: zero[i] = work[LPC_ORDER + i]; yading@10: data[i] = sblock_data[i] - zero[i]; yading@10: } yading@10: yading@10: /** yading@10: * Codebook search is performed without taking into account the contribution yading@10: * of the previous subblock, since it has been just subtracted from input yading@10: * data. yading@10: */ yading@10: memset(work, 0, LPC_ORDER * sizeof(*work)); yading@10: yading@10: cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs, yading@10: data); yading@10: if (cba_idx) { yading@10: /** yading@10: * The filtered vector from the adaptive codebook can be retrieved from yading@10: * work, see implementation of adaptive_cb_search(). yading@10: */ yading@10: memcpy(cba, work + LPC_ORDER, sizeof(cba)); yading@10: yading@10: ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1); yading@10: m[0] = (ff_irms(cba_vect) * rms) >> 12; yading@10: } yading@10: fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx); yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: cb1[i] = ff_cb1_vects[cb1_idx][i]; yading@10: cb2[i] = ff_cb2_vects[cb2_idx][i]; yading@10: } yading@10: ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE, yading@10: LPC_ORDER); yading@10: memcpy(cb1, work + LPC_ORDER, sizeof(cb1)); yading@10: m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8; yading@10: ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE, yading@10: LPC_ORDER); yading@10: memcpy(cb2, work + LPC_ORDER, sizeof(cb2)); yading@10: m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8; yading@10: best_error = FLT_MAX; yading@10: gain = 0; yading@10: for (n = 0; n < 256; n++) { yading@10: g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) * yading@10: (1/4096.0); yading@10: g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) * yading@10: (1/4096.0); yading@10: error = 0; yading@10: if (cba_idx) { yading@10: g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) * yading@10: (1/4096.0); yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] + yading@10: g[2] * cb2[i]; yading@10: error += (data[i] - sblock_data[i]) * yading@10: (data[i] - sblock_data[i]); yading@10: } yading@10: } else { yading@10: for (i = 0; i < BLOCKSIZE; i++) { yading@10: data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i]; yading@10: error += (data[i] - sblock_data[i]) * yading@10: (data[i] - sblock_data[i]); yading@10: } yading@10: } yading@10: if (error < best_error) { yading@10: best_error = error; yading@10: gain = n; yading@10: } yading@10: } yading@10: put_bits(pb, 7, cba_idx); yading@10: put_bits(pb, 8, gain); yading@10: put_bits(pb, 7, cb1_idx); yading@10: put_bits(pb, 7, cb2_idx); yading@10: ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms, yading@10: gain); yading@10: } yading@10: yading@10: yading@10: static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, yading@10: const AVFrame *frame, int *got_packet_ptr) yading@10: { yading@10: static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4}; yading@10: static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; yading@10: RA144Context *ractx = avctx->priv_data; yading@10: PutBitContext pb; yading@10: int32_t lpc_data[NBLOCKS * BLOCKSIZE]; yading@10: int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER]; yading@10: int shift[LPC_ORDER]; yading@10: int16_t block_coefs[NBLOCKS][LPC_ORDER]; yading@10: int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */ yading@10: unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */ yading@10: const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL; yading@10: int energy = 0; yading@10: int i, idx, ret; yading@10: yading@10: if (ractx->last_frame) yading@10: return 0; yading@10: yading@10: if ((ret = ff_alloc_packet2(avctx, avpkt, FRAMESIZE)) < 0) yading@10: return ret; yading@10: yading@10: /** yading@10: * Since the LPC coefficients are calculated on a frame centered over the yading@10: * fourth subframe, to encode a given frame, data from the next frame is yading@10: * needed. In each call to this function, the previous frame (whose data are yading@10: * saved in the encoder context) is encoded, and data from the current frame yading@10: * are saved in the encoder context to be used in the next function call. yading@10: */ yading@10: for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) { yading@10: lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i]; yading@10: energy += (lpc_data[i] * lpc_data[i]) >> 4; yading@10: } yading@10: if (frame) { yading@10: int j; yading@10: for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) { yading@10: lpc_data[i] = samples[j] >> 2; yading@10: energy += (lpc_data[i] * lpc_data[i]) >> 4; yading@10: } yading@10: } yading@10: if (i < NBLOCKS * BLOCKSIZE) yading@10: memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data)); yading@10: energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab, yading@10: 32)]; yading@10: yading@10: ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER, yading@10: LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON, yading@10: 0, ORDER_METHOD_EST, 12, 0); yading@10: for (i = 0; i < LPC_ORDER; i++) yading@10: block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] << yading@10: (12 - shift[LPC_ORDER - 1])); yading@10: yading@10: /** yading@10: * TODO: apply perceptual weighting of the input speech through bandwidth yading@10: * expansion of the LPC filter. yading@10: */ yading@10: yading@10: if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) { yading@10: /** yading@10: * The filter is unstable: use the coefficients of the previous frame. yading@10: */ yading@10: ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]); yading@10: if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) { yading@10: /* the filter is still unstable. set reflection coeffs to zero. */ yading@10: memset(lpc_refl, 0, sizeof(lpc_refl)); yading@10: } yading@10: } yading@10: init_put_bits(&pb, avpkt->data, avpkt->size); yading@10: for (i = 0; i < LPC_ORDER; i++) { yading@10: idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]); yading@10: put_bits(&pb, bit_sizes[i], idx); yading@10: lpc_refl[i] = ff_lpc_refl_cb[i][idx]; yading@10: } yading@10: ractx->lpc_refl_rms[0] = ff_rms(lpc_refl); yading@10: ff_eval_coefs(ractx->lpc_coef[0], lpc_refl); yading@10: refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); yading@10: refl_rms[1] = ff_interp(ractx, block_coefs[1], 2, yading@10: energy <= ractx->old_energy, yading@10: ff_t_sqrt(energy * ractx->old_energy) >> 12); yading@10: refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy); yading@10: refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy); yading@10: ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]); yading@10: put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32)); yading@10: for (i = 0; i < NBLOCKS; i++) yading@10: ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE, yading@10: block_coefs[i], refl_rms[i], &pb); yading@10: flush_put_bits(&pb); yading@10: ractx->old_energy = energy; yading@10: ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; yading@10: FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); yading@10: yading@10: /* copy input samples to current block for processing in next call */ yading@10: i = 0; yading@10: if (frame) { yading@10: for (; i < frame->nb_samples; i++) yading@10: ractx->curr_block[i] = samples[i] >> 2; yading@10: yading@10: if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0) yading@10: return ret; yading@10: } else yading@10: ractx->last_frame = 1; yading@10: memset(&ractx->curr_block[i], 0, yading@10: (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block)); yading@10: yading@10: /* Get the next frame pts/duration */ yading@10: ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts, yading@10: &avpkt->duration); yading@10: yading@10: avpkt->size = FRAMESIZE; yading@10: *got_packet_ptr = 1; yading@10: return 0; yading@10: } yading@10: yading@10: yading@10: AVCodec ff_ra_144_encoder = { yading@10: .name = "real_144", yading@10: .type = AVMEDIA_TYPE_AUDIO, yading@10: .id = AV_CODEC_ID_RA_144, yading@10: .priv_data_size = sizeof(RA144Context), yading@10: .init = ra144_encode_init, yading@10: .encode2 = ra144_encode_frame, yading@10: .close = ra144_encode_close, yading@10: .capabilities = CODEC_CAP_DELAY | CODEC_CAP_SMALL_LAST_FRAME, yading@10: .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, yading@10: AV_SAMPLE_FMT_NONE }, yading@10: .supported_samplerates = (const int[]){ 8000, 0 }, yading@10: .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"), yading@10: };