Mercurial > hg > pmhd
view extra/sinemodel1.m @ 13:844d341cf643 tip
Back up before ISMIR
author | Yading Song <yading.song@eecs.qmul.ac.uk> |
---|---|
date | Thu, 31 Oct 2013 13:17:06 +0000 |
parents | 6840f77b83aa |
children |
line wrap: on
line source
function [y]=sinemodel1(x,w,N,t) %initializing values M = length(w); % window size - the longer the more frequency resolution N2 = N/2+1; % positive part of the spectrum Ns= 1024; % FFT size for synthesis (even) H = 256; % analysis/synthesishop size soundlength = length(x); % length of input sound array - samples fftbuffer = zeros(N,1); % initialize buffer for FFT %Create a loop to step through the sound array x %initializing the loop hNs = Ns/2; % half synthesis window size hM = (M-1)/2; % half analysis window size used to overlap windows pin = max(H+1,1+hM); % initialize sound pointer to middle of analysis window pend = soundlength-max(H,hM); % last sample to start a frame y = zeros(soundlength,1); % initialize output array w = w/sum(w); % normalize analysis window sw = zeros(Ns,1); ow = triang(2*H-1); % overlapping window ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes sw(ovidx) = ow(1:2*H-1); bh = blackmanharris(Ns); % synthesis window bh = bh ./ sum(bh); % normalize synthesis window sw(ovidx) = sw(ovidx) ./ bh(ovidx); while pin<pend xw = x(pin-hM:pin+hM).*w(1:M)'; % window the input sound - STFT definition %zero phased window fftbuffer(:) = 0; % reset buffer fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase fftbuffer fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2); %compute FFT of the zero phased frame X = fft(fftbuffer); %calculate magnitude and phase spectrum of of positive frequencies mX = 20*log10(abs(X(1:N2))); pX = unwrap(angle(X(1:N2))); %Find the locations, ploc, of the local maxima above a given %threshold, t, in each magnitude spectrum by finding changes of slope. ploc = 1+find((mX(2:N2-1)>t).*(mX(2:N2-1)>mX(3:N2)).*(mX(2:N2-1)>mX(1:N2-2))); %Find the magnitudes, pmag, and phases, pphase, of the obtained %locations. pmag = mX(ploc); %pmag = mX(ploc)*0.4; pphase = pX(ploc); %peak interpolation [iploc, ipmag, ipphase] = peakinterp (mX, pX, ploc); %plot for a window if (pin==1+hM+20*H) figure subplot(2,1,1) plot(mX) hold on plot(iploc,mX(ploc),'*') title('magnitude and peak values'); hold off subplot(2,1,2) plot(pX) hold on plot(iploc,pX(ploc),'*') title('phase and peak values'); hold off %number of peaks npeaksm = length(pmag) npeaksp = length(pphase) end %-----synthesis-----% plocs = (ploc-1)*Ns/N+1; % adapt peak locations to synthesis FFT Y = genspecsines(plocs,pmag,pphase,Ns); % generate spec sines yw = fftshift(real(ifft(Y))); % time domain of sinusoids y(pin-hNs:pin+hNs-1) = y(pin-hNs:pin+hNs-1)+ sw.*yw(1:Ns); % overlap-add pin = pin+H; % advance the sound pointer end end