Mercurial > hg > pmhd
diff code Kat/hpsmodel.m @ 1:881c3acf1164
matlab code Kat
| author | Katerina <katkost@gmail.com> |
|---|---|
| date | Sat, 20 Apr 2013 12:35:51 +0100 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/code Kat/hpsmodel.m Sat Apr 20 12:35:51 2013 +0100 @@ -0,0 +1,101 @@ +function [y,yh,ys,fr0] = hpsmodel(x,fs,w,N,t,nH,minf0,maxf0,f0et,maxhd,stocf) +%=> analysis/synthesis of a sound using the sinusoidal harmonic model +% x: input sound, fs: sampling rate, w: analysis window (odd size), +% N: FFT size (minimum 512), t: threshold in negative dB, +% nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz, +% maxf0: maximim f0 frequency in Hz, +% f0et: error threshold in the f0 detection (ex: 5), +% maxhd: max. relative deviation in harmonic detection (ex: .2) +% stocf: decimation factor of mag spectrum for stochastic analysis +% y: output sound, yh: harmonic component, ys: stochastic component +M = length(w); % analysis window size +Ns = 1024; % FFT size for synthesis +H = 256; % hop size for analysis and synthesis +N2 = N/2+1; % half-size of spectrum +soundlength = length(x); % length of input sound array +hNs = Ns/2; % half synthesis window size +hM = (M-1)/2; % half analysis window size +pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window +pend = soundlength-max(hM,hNs); % last sample to start a frame +fftbuffer = zeros(N,1); % initialize buffer for FFT +yh = zeros(soundlength+Ns/2,1); % output sine component +ys = zeros(soundlength+Ns/2,1); % output residual component +w = w/sum(w); % normalize analysis window +sw = zeros(Ns,1); +ow = triang(2*H-1); % overlapping window +ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes +sw(ovidx) = ow(1:2*H-1); +bh = blackmanharris(Ns); % synthesis window +bh = bh ./ sum(bh); % normalize synthesis window +wr = bh; % window for residual +sw(ovidx) = sw(ovidx) ./ bh(ovidx); +sws = H*hanning(Ns); % synthesis window for stochastic + +i = 0; +while pin<pend + i = i+1; + %-----analysis-----% + xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound + fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer + fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2); + X = fft(fftbuffer); % compute the FFT + mX = 20*log10(abs(X(1:N2))); % magnitude spectrum + pX = unwrap(angle(X(1:N/2+1))); % unwrapped phase spectrum + ploc = 1 + find((mX(2:N2-1)>t) .* (mX(2:N2-1)>mX(3:N2)) ... + .* (mX(2:N2-1)>mX(1:N2-2))); % find peaks + [ploc,pmag,pphase] = peakinterp(mX,pX,ploc); % refine peak values + f0 = f0detection(mX,fs,ploc,pmag,f0et,minf0,maxf0); % find f0 + fr0(i)=f0; + hloc = zeros(nH,1); % initialize harmonic locations + hmag = zeros(nH,1)-100; % initialize harmonic magnitudes + hphase = zeros(nH,1); % initialize harmonic phases + hf = (f0>0).*(f0.*(1:nH)); % initialize harmonic frequencies + hi = 1; % initialize harmonic index + npeaks = length(ploc); % number of peaks found + while (f0>0 && hi<=nH && hf(hi)<fs/2) % find harmonic peaks + [dev,pei] = min(abs((ploc(1:npeaks)-1)/N*fs-hf(hi))); % closest peak + if ((hi==1 || ~any(hloc(1:hi-1)==ploc(pei))) && dev<maxhd*hf(hi)) + hloc(hi) = ploc(pei); % harmonic locations + hmag(hi) = pmag(pei); % harmonic magnitudes + hphase(hi) = pphase(pei); % harmonic phases + end + hi = hi+1; % increase harmonic index + end + hloc(1:hi-1) = (hloc(1:hi-1)~=0).*((hloc(1:hi-1)-1)*Ns/N+1); % synth. locs + ri= pin-hNs; % input sound pointer for residual analysis + xr = x(ri:ri+Ns-1).*wr(1:Ns); % window the input sound + Xr = fft(fftshift(xr)); % compute FFT for residual analysis + Yh = genspecsines(hloc(1:hi-1),hmag,hphase,Ns); % generate sines + Yr = Xr-Yh; % get the residual complex spectrum + mYr = abs(Yr(1:Ns/2+1)); % magnitude spectrum of residual + %mYs = stochenvelope(mYr,stocf); + %-----transformations-----% + mYsenv = decimate(mYr,stocf,1); % decimate the magnitude spectrum + %-----synthesis-----% + mYs = interp(mYsenv,stocf,1); % interpolate to original size + +% n=1:N/2+1; +% plot(n/N*Ns,mX); %plotting the original spectrum +% hold on; +% plot(20*log10(abs(mYs)), 'r'); %plotting the approximation done by the decimate function +% +% hold on; +% plot(hloc, hmag, 'g*'); +% hold off; +% pause + + roffset = ceil(stocf/2)-1; % interpolated array offset + mYs = [ mYs(1)*ones(roffset,1); mYs(1:Ns/2+1-roffset) ]; + pYs = 2*pi*rand(Ns/2+1,1); % generate phase random values + mYs1 = [mYs(1:Ns/2+1); mYs(Ns/2:-1:2)]; % create magnitude spectrum + pYs1 = [pYs(1:Ns/2+1); -1*pYs(Ns/2:-1:2)]; % create phase spectrum + Ys = mYs1.*cos(pYs1)+1i*mYs1.*sin(pYs1); % compute complex spectrum + yhw = fftshift(real(ifft(Yh))); % sines in time domain using IFFT + ysw = fftshift(real(ifft(Ys))); % stoc. in time domain using IFFT + yh(ri:ri+Ns-1) = yh(ri:ri+Ns-1)+yhw(1:Ns).*sw; % overlap-add for sines + ys(ri:ri+Ns-1) = ys(ri:ri+Ns-1)+ysw(1:Ns).*sws; % overlap-add for stoch. + pin = pin+H; % advance the sound pointer +end + +%ys=tanh(10*ys); +y= yh+ys; % sum sines and stochastic \ No newline at end of file
