annotate hpsmodel.m @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents f445c3017523
children
rev   line source
yading@11 1 function [y,yh,ys,fr0] = hpsmodel(x,fs,w,N,t,nH,minf0,maxf0,f0et,maxhd,stocf)
yading@11 2 %=> analysis/synthesis of a sound using the sinusoidal harmonic model
yading@11 3 % x: input sound, fs: sampling rate, w: analysis window (odd size),
yading@11 4 % N: FFT size (minimum 512), t: threshold in negative dB,
yading@11 5 % nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz,
yading@11 6 % maxf0: maximim f0 frequency in Hz,
yading@11 7 % f0et: error threshold in the f0 detection (ex: 5),
yading@11 8 % maxhd: max. relative deviation in harmonic detection (ex: .2)
yading@11 9 % stocf: decimation factor of mag spectrum for stochastic analysis
yading@11 10 % y: output sound, yh: harmonic component, ys: stochastic component
yading@11 11
yading@11 12 %x=tanh(10*x);
yading@11 13
yading@11 14 M = length(w); % analysis window size
yading@11 15 Ns = 1024; % FFT size for synthesis
yading@11 16 H = 256; % hop size for analysis and synthesis
yading@11 17 N2 = N/2+1; % half-size of spectrum
yading@11 18 soundlength = length(x); % length of input sound array
yading@11 19 hNs = Ns/2; % half synthesis window size
yading@11 20 hM = (M-1)/2; % half analysis window size
yading@11 21 pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window
yading@11 22 pend = soundlength-max(hM,hNs); % last sample to start a frame
yading@11 23 fftbuffer = zeros(N,1); % initialize buffer for FFT
yading@11 24 yh = zeros(soundlength+Ns/2,1); % output sine component
yading@11 25 ys = zeros(soundlength+Ns/2,1); % output residual component
yading@11 26 w = w/sum(w); % normalize analysis window
yading@11 27 sw = zeros(Ns,1);
yading@11 28 ow = triang(2*H-1); % overlapping window
yading@11 29 ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes
yading@11 30 sw(ovidx) = ow(1:2*H-1);
yading@11 31 bh = blackmanharris(Ns); % synthesis window
yading@11 32 bh = bh ./ sum(bh); % normalize synthesis window
yading@11 33 wr = bh; % window for residual
yading@11 34 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
yading@11 35 sws = H*hanning(Ns); % synthesis window for stochastic
yading@11 36
yading@11 37 i = 0;
yading@11 38 while pin<pend
yading@11 39 i = i+1;
yading@11 40 %-----analysis-----%
yading@11 41 xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound
yading@11 42 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer
yading@11 43 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
yading@11 44 X = fft(fftbuffer); % compute the FFT
yading@11 45 mX = 20*log10(abs(X(1:N2))); % magnitude spectrum
yading@11 46 pX = unwrap(angle(X(1:N/2+1))); % unwrapped phase spectrum
yading@11 47 ploc = 1 + find((mX(2:N2-1)>t) .* (mX(2:N2-1)>mX(3:N2)) ...
yading@11 48 .* (mX(2:N2-1)>mX(1:N2-2))); % find peaks
yading@11 49 [ploc,pmag,pphase] = peakinterp(mX,pX,ploc); % refine peak values
yading@11 50 f0 = f0detection(mX,fs,ploc,pmag,f0et,minf0,maxf0); % find f0
yading@11 51 fr0(i)=f0;
yading@11 52 hloc = zeros(nH,1); % initialize harmonic locations
yading@11 53 hmag = zeros(nH,1)-100; % initialize harmonic magnitudes
yading@11 54 hphase = zeros(nH,1); % initialize harmonic phases
yading@11 55 hf = (f0>0).*(f0.*(1:nH)); % initialize harmonic frequencies
yading@11 56 hi = 1; % initialize harmonic index
yading@11 57 npeaks = length(ploc); % number of peaks found
yading@11 58 while (f0>0 && hi<=nH && hf(hi)<fs/2) % find harmonic peaks
yading@11 59 [dev,pei] = min(abs((ploc(1:npeaks)-1)/N*fs-hf(hi))); % closest peak
yading@11 60 if ((hi==1 || ~any(hloc(1:hi-1)==ploc(pei))) && dev<maxhd*hf(hi))
yading@11 61 hloc(hi) = ploc(pei); % harmonic locations
yading@11 62 hmag(hi) = pmag(pei); % harmonic magnitudes
yading@11 63 hphase(hi) = pphase(pei); % harmonic phases
yading@11 64 end
yading@11 65 hi = hi+1; % increase harmonic index
yading@11 66 end
yading@11 67 hloc(1:hi-1) = (hloc(1:hi-1)~=0).*((hloc(1:hi-1)-1)*Ns/N+1); % synth. locs
yading@11 68 ri= pin-hNs; % input sound pointer for residual analysis
yading@11 69 xr = x(ri:ri+Ns-1).*wr(1:Ns); % window the input sound
yading@11 70 Xr = fft(fftshift(xr)); % compute FFT for residual analysis
yading@11 71 Yh = genspecsines(hloc(1:hi-1),hmag,hphase,Ns); % generate sines
yading@11 72 Yr = Xr-Yh; % get the residual complex spectrum
yading@11 73 mYr = abs(Yr(1:Ns/2+1)); % magnitude spectrum of residual
yading@11 74 %mYs = stochenvelope(mYr,stocf);
yading@11 75 %-----transformations-----%
yading@11 76 mYsenv = decimate(mYr,stocf,1); % decimate the magnitude spectrum
yading@11 77 %-----synthesis-----%
yading@11 78 mYs = interp(mYsenv,stocf,1); % interpolate to original size
yading@11 79
yading@11 80 % n=1:N/2+1;
yading@11 81 % plot(n/N*Ns,mX); %plotting the original spectrum
yading@11 82 % hold on;
yading@11 83 % plot(20*log10(abs(mYs)), 'r'); %plotting the approximation done by the decimate function
yading@11 84 %
yading@11 85 % hold on;
yading@11 86 % plot(hloc, hmag, 'g*');
yading@11 87 % hold off;
yading@11 88 % pause
yading@11 89
yading@11 90 roffset = ceil(stocf/2)-1; % interpolated array offset
yading@11 91 mYs = [ mYs(1)*ones(roffset,1); mYs(1:Ns/2+1-roffset) ];
yading@11 92 pYs = 2*pi*rand(Ns/2+1,1); % generate phase random values
yading@11 93 mYs1 = [mYs(1:Ns/2+1); mYs(Ns/2:-1:2)]; % create magnitude spectrum
yading@11 94 pYs1 = [pYs(1:Ns/2+1); -1*pYs(Ns/2:-1:2)]; % create phase spectrum
yading@11 95 Ys = mYs1.*cos(pYs1)+1i*mYs1.*sin(pYs1); % compute complex spectrum
yading@11 96 yhw = fftshift(real(ifft(Yh))); % sines in time domain using IFFT
yading@11 97 ysw = fftshift(real(ifft(Ys))); % stoc. in time domain using IFFT
yading@11 98 yh(ri:ri+Ns-1) = yh(ri:ri+Ns-1)+yhw(1:Ns).*sw; % overlap-add for sines
yading@11 99 ys(ri:ri+Ns-1) = ys(ri:ri+Ns-1)+ysw(1:Ns).*sws; % overlap-add for stoch.
yading@11 100 pin = pin+H; % advance the sound pointer
yading@11 101 end
yading@11 102
yading@11 103 %ys=tanh(10*ys);
yading@11 104 y= yh+ys; % sum sines and stochastic