annotate ffmpeg/libavcodec/wmavoice.c @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * Windows Media Audio Voice decoder.
yading@10 3 * Copyright (c) 2009 Ronald S. Bultje
yading@10 4 *
yading@10 5 * This file is part of FFmpeg.
yading@10 6 *
yading@10 7 * FFmpeg is free software; you can redistribute it and/or
yading@10 8 * modify it under the terms of the GNU Lesser General Public
yading@10 9 * License as published by the Free Software Foundation; either
yading@10 10 * version 2.1 of the License, or (at your option) any later version.
yading@10 11 *
yading@10 12 * FFmpeg is distributed in the hope that it will be useful,
yading@10 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
yading@10 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
yading@10 15 * Lesser General Public License for more details.
yading@10 16 *
yading@10 17 * You should have received a copy of the GNU Lesser General Public
yading@10 18 * License along with FFmpeg; if not, write to the Free Software
yading@10 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
yading@10 20 */
yading@10 21
yading@10 22 /**
yading@10 23 * @file
yading@10 24 * @brief Windows Media Audio Voice compatible decoder
yading@10 25 * @author Ronald S. Bultje <rsbultje@gmail.com>
yading@10 26 */
yading@10 27
yading@10 28 #include <math.h>
yading@10 29
yading@10 30 #include "libavutil/channel_layout.h"
yading@10 31 #include "libavutil/float_dsp.h"
yading@10 32 #include "libavutil/mem.h"
yading@10 33 #include "avcodec.h"
yading@10 34 #include "internal.h"
yading@10 35 #include "get_bits.h"
yading@10 36 #include "put_bits.h"
yading@10 37 #include "wmavoice_data.h"
yading@10 38 #include "celp_filters.h"
yading@10 39 #include "acelp_vectors.h"
yading@10 40 #include "acelp_filters.h"
yading@10 41 #include "lsp.h"
yading@10 42 #include "dct.h"
yading@10 43 #include "rdft.h"
yading@10 44 #include "sinewin.h"
yading@10 45
yading@10 46 #define MAX_BLOCKS 8 ///< maximum number of blocks per frame
yading@10 47 #define MAX_LSPS 16 ///< maximum filter order
yading@10 48 #define MAX_LSPS_ALIGN16 16 ///< same as #MAX_LSPS; needs to be multiple
yading@10 49 ///< of 16 for ASM input buffer alignment
yading@10 50 #define MAX_FRAMES 3 ///< maximum number of frames per superframe
yading@10 51 #define MAX_FRAMESIZE 160 ///< maximum number of samples per frame
yading@10 52 #define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history
yading@10 53 #define MAX_SFRAMESIZE (MAX_FRAMESIZE * MAX_FRAMES)
yading@10 54 ///< maximum number of samples per superframe
yading@10 55 #define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that
yading@10 56 ///< was split over two packets
yading@10 57 #define VLC_NBITS 6 ///< number of bits to read per VLC iteration
yading@10 58
yading@10 59 /**
yading@10 60 * Frame type VLC coding.
yading@10 61 */
yading@10 62 static VLC frame_type_vlc;
yading@10 63
yading@10 64 /**
yading@10 65 * Adaptive codebook types.
yading@10 66 */
yading@10 67 enum {
yading@10 68 ACB_TYPE_NONE = 0, ///< no adaptive codebook (only hardcoded fixed)
yading@10 69 ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which
yading@10 70 ///< we interpolate to get a per-sample pitch.
yading@10 71 ///< Signal is generated using an asymmetric sinc
yading@10 72 ///< window function
yading@10 73 ///< @note see #wmavoice_ipol1_coeffs
yading@10 74 ACB_TYPE_HAMMING = 2 ///< Per-block pitch with signal generation using
yading@10 75 ///< a Hamming sinc window function
yading@10 76 ///< @note see #wmavoice_ipol2_coeffs
yading@10 77 };
yading@10 78
yading@10 79 /**
yading@10 80 * Fixed codebook types.
yading@10 81 */
yading@10 82 enum {
yading@10 83 FCB_TYPE_SILENCE = 0, ///< comfort noise during silence
yading@10 84 ///< generated from a hardcoded (fixed) codebook
yading@10 85 ///< with per-frame (low) gain values
yading@10 86 FCB_TYPE_HARDCODED = 1, ///< hardcoded (fixed) codebook with per-block
yading@10 87 ///< gain values
yading@10 88 FCB_TYPE_AW_PULSES = 2, ///< Pitch-adaptive window (AW) pulse signals,
yading@10 89 ///< used in particular for low-bitrate streams
yading@10 90 FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in
yading@10 91 ///< combinations of either single pulses or
yading@10 92 ///< pulse pairs
yading@10 93 };
yading@10 94
yading@10 95 /**
yading@10 96 * Description of frame types.
yading@10 97 */
yading@10 98 static const struct frame_type_desc {
yading@10 99 uint8_t n_blocks; ///< amount of blocks per frame (each block
yading@10 100 ///< (contains 160/#n_blocks samples)
yading@10 101 uint8_t log_n_blocks; ///< log2(#n_blocks)
yading@10 102 uint8_t acb_type; ///< Adaptive codebook type (ACB_TYPE_*)
yading@10 103 uint8_t fcb_type; ///< Fixed codebook type (FCB_TYPE_*)
yading@10 104 uint8_t dbl_pulses; ///< how many pulse vectors have pulse pairs
yading@10 105 ///< (rather than just one single pulse)
yading@10 106 ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES
yading@10 107 uint16_t frame_size; ///< the amount of bits that make up the block
yading@10 108 ///< data (per frame)
yading@10 109 } frame_descs[17] = {
yading@10 110 { 1, 0, ACB_TYPE_NONE, FCB_TYPE_SILENCE, 0, 0 },
yading@10 111 { 2, 1, ACB_TYPE_NONE, FCB_TYPE_HARDCODED, 0, 28 },
yading@10 112 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES, 0, 46 },
yading@10 113 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 80 },
yading@10 114 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 104 },
yading@10 115 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0, 108 },
yading@10 116 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 132 },
yading@10 117 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 168 },
yading@10 118 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 64 },
yading@10 119 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 80 },
yading@10 120 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 104 },
yading@10 121 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 108 },
yading@10 122 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 132 },
yading@10 123 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 168 },
yading@10 124 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 176 },
yading@10 125 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 208 },
yading@10 126 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 256 }
yading@10 127 };
yading@10 128
yading@10 129 /**
yading@10 130 * WMA Voice decoding context.
yading@10 131 */
yading@10 132 typedef struct {
yading@10 133 /**
yading@10 134 * @name Global values specified in the stream header / extradata or used all over.
yading@10 135 * @{
yading@10 136 */
yading@10 137 GetBitContext gb; ///< packet bitreader. During decoder init,
yading@10 138 ///< it contains the extradata from the
yading@10 139 ///< demuxer. During decoding, it contains
yading@10 140 ///< packet data.
yading@10 141 int8_t vbm_tree[25]; ///< converts VLC codes to frame type
yading@10 142
yading@10 143 int spillover_bitsize; ///< number of bits used to specify
yading@10 144 ///< #spillover_nbits in the packet header
yading@10 145 ///< = ceil(log2(ctx->block_align << 3))
yading@10 146 int history_nsamples; ///< number of samples in history for signal
yading@10 147 ///< prediction (through ACB)
yading@10 148
yading@10 149 /* postfilter specific values */
yading@10 150 int do_apf; ///< whether to apply the averaged
yading@10 151 ///< projection filter (APF)
yading@10 152 int denoise_strength; ///< strength of denoising in Wiener filter
yading@10 153 ///< [0-11]
yading@10 154 int denoise_tilt_corr; ///< Whether to apply tilt correction to the
yading@10 155 ///< Wiener filter coefficients (postfilter)
yading@10 156 int dc_level; ///< Predicted amount of DC noise, based
yading@10 157 ///< on which a DC removal filter is used
yading@10 158
yading@10 159 int lsps; ///< number of LSPs per frame [10 or 16]
yading@10 160 int lsp_q_mode; ///< defines quantizer defaults [0, 1]
yading@10 161 int lsp_def_mode; ///< defines different sets of LSP defaults
yading@10 162 ///< [0, 1]
yading@10 163 int frame_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
yading@10 164 ///< per-frame (independent coding)
yading@10 165 int sframe_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
yading@10 166 ///< per superframe (residual coding)
yading@10 167
yading@10 168 int min_pitch_val; ///< base value for pitch parsing code
yading@10 169 int max_pitch_val; ///< max value + 1 for pitch parsing
yading@10 170 int pitch_nbits; ///< number of bits used to specify the
yading@10 171 ///< pitch value in the frame header
yading@10 172 int block_pitch_nbits; ///< number of bits used to specify the
yading@10 173 ///< first block's pitch value
yading@10 174 int block_pitch_range; ///< range of the block pitch
yading@10 175 int block_delta_pitch_nbits; ///< number of bits used to specify the
yading@10 176 ///< delta pitch between this and the last
yading@10 177 ///< block's pitch value, used in all but
yading@10 178 ///< first block
yading@10 179 int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is
yading@10 180 ///< from -this to +this-1)
yading@10 181 uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale
yading@10 182 ///< conversion
yading@10 183
yading@10 184 /**
yading@10 185 * @}
yading@10 186 *
yading@10 187 * @name Packet values specified in the packet header or related to a packet.
yading@10 188 *
yading@10 189 * A packet is considered to be a single unit of data provided to this
yading@10 190 * decoder by the demuxer.
yading@10 191 * @{
yading@10 192 */
yading@10 193 int spillover_nbits; ///< number of bits of the previous packet's
yading@10 194 ///< last superframe preceding this
yading@10 195 ///< packet's first full superframe (useful
yading@10 196 ///< for re-synchronization also)
yading@10 197 int has_residual_lsps; ///< if set, superframes contain one set of
yading@10 198 ///< LSPs that cover all frames, encoded as
yading@10 199 ///< independent and residual LSPs; if not
yading@10 200 ///< set, each frame contains its own, fully
yading@10 201 ///< independent, LSPs
yading@10 202 int skip_bits_next; ///< number of bits to skip at the next call
yading@10 203 ///< to #wmavoice_decode_packet() (since
yading@10 204 ///< they're part of the previous superframe)
yading@10 205
yading@10 206 uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + FF_INPUT_BUFFER_PADDING_SIZE];
yading@10 207 ///< cache for superframe data split over
yading@10 208 ///< multiple packets
yading@10 209 int sframe_cache_size; ///< set to >0 if we have data from an
yading@10 210 ///< (incomplete) superframe from a previous
yading@10 211 ///< packet that spilled over in the current
yading@10 212 ///< packet; specifies the amount of bits in
yading@10 213 ///< #sframe_cache
yading@10 214 PutBitContext pb; ///< bitstream writer for #sframe_cache
yading@10 215
yading@10 216 /**
yading@10 217 * @}
yading@10 218 *
yading@10 219 * @name Frame and superframe values
yading@10 220 * Superframe and frame data - these can change from frame to frame,
yading@10 221 * although some of them do in that case serve as a cache / history for
yading@10 222 * the next frame or superframe.
yading@10 223 * @{
yading@10 224 */
yading@10 225 double prev_lsps[MAX_LSPS]; ///< LSPs of the last frame of the previous
yading@10 226 ///< superframe
yading@10 227 int last_pitch_val; ///< pitch value of the previous frame
yading@10 228 int last_acb_type; ///< frame type [0-2] of the previous frame
yading@10 229 int pitch_diff_sh16; ///< ((cur_pitch_val - #last_pitch_val)
yading@10 230 ///< << 16) / #MAX_FRAMESIZE
yading@10 231 float silence_gain; ///< set for use in blocks if #ACB_TYPE_NONE
yading@10 232
yading@10 233 int aw_idx_is_ext; ///< whether the AW index was encoded in
yading@10 234 ///< 8 bits (instead of 6)
yading@10 235 int aw_pulse_range; ///< the range over which #aw_pulse_set1()
yading@10 236 ///< can apply the pulse, relative to the
yading@10 237 ///< value in aw_first_pulse_off. The exact
yading@10 238 ///< position of the first AW-pulse is within
yading@10 239 ///< [pulse_off, pulse_off + this], and
yading@10 240 ///< depends on bitstream values; [16 or 24]
yading@10 241 int aw_n_pulses[2]; ///< number of AW-pulses in each block; note
yading@10 242 ///< that this number can be negative (in
yading@10 243 ///< which case it basically means "zero")
yading@10 244 int aw_first_pulse_off[2]; ///< index of first sample to which to
yading@10 245 ///< apply AW-pulses, or -0xff if unset
yading@10 246 int aw_next_pulse_off_cache; ///< the position (relative to start of the
yading@10 247 ///< second block) at which pulses should
yading@10 248 ///< start to be positioned, serves as a
yading@10 249 ///< cache for pitch-adaptive window pulses
yading@10 250 ///< between blocks
yading@10 251
yading@10 252 int frame_cntr; ///< current frame index [0 - 0xFFFE]; is
yading@10 253 ///< only used for comfort noise in #pRNG()
yading@10 254 float gain_pred_err[6]; ///< cache for gain prediction
yading@10 255 float excitation_history[MAX_SIGNAL_HISTORY];
yading@10 256 ///< cache of the signal of previous
yading@10 257 ///< superframes, used as a history for
yading@10 258 ///< signal generation
yading@10 259 float synth_history[MAX_LSPS]; ///< see #excitation_history
yading@10 260 /**
yading@10 261 * @}
yading@10 262 *
yading@10 263 * @name Postfilter values
yading@10 264 *
yading@10 265 * Variables used for postfilter implementation, mostly history for
yading@10 266 * smoothing and so on, and context variables for FFT/iFFT.
yading@10 267 * @{
yading@10 268 */
yading@10 269 RDFTContext rdft, irdft; ///< contexts for FFT-calculation in the
yading@10 270 ///< postfilter (for denoise filter)
yading@10 271 DCTContext dct, dst; ///< contexts for phase shift (in Hilbert
yading@10 272 ///< transform, part of postfilter)
yading@10 273 float sin[511], cos[511]; ///< 8-bit cosine/sine windows over [-pi,pi]
yading@10 274 ///< range
yading@10 275 float postfilter_agc; ///< gain control memory, used in
yading@10 276 ///< #adaptive_gain_control()
yading@10 277 float dcf_mem[2]; ///< DC filter history
yading@10 278 float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE];
yading@10 279 ///< zero filter output (i.e. excitation)
yading@10 280 ///< by postfilter
yading@10 281 float denoise_filter_cache[MAX_FRAMESIZE];
yading@10 282 int denoise_filter_cache_size; ///< samples in #denoise_filter_cache
yading@10 283 DECLARE_ALIGNED(32, float, tilted_lpcs_pf)[0x80];
yading@10 284 ///< aligned buffer for LPC tilting
yading@10 285 DECLARE_ALIGNED(32, float, denoise_coeffs_pf)[0x80];
yading@10 286 ///< aligned buffer for denoise coefficients
yading@10 287 DECLARE_ALIGNED(32, float, synth_filter_out_buf)[0x80 + MAX_LSPS_ALIGN16];
yading@10 288 ///< aligned buffer for postfilter speech
yading@10 289 ///< synthesis
yading@10 290 /**
yading@10 291 * @}
yading@10 292 */
yading@10 293 } WMAVoiceContext;
yading@10 294
yading@10 295 /**
yading@10 296 * Set up the variable bit mode (VBM) tree from container extradata.
yading@10 297 * @param gb bit I/O context.
yading@10 298 * The bit context (s->gb) should be loaded with byte 23-46 of the
yading@10 299 * container extradata (i.e. the ones containing the VBM tree).
yading@10 300 * @param vbm_tree pointer to array to which the decoded VBM tree will be
yading@10 301 * written.
yading@10 302 * @return 0 on success, <0 on error.
yading@10 303 */
yading@10 304 static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25])
yading@10 305 {
yading@10 306 static const uint8_t bits[] = {
yading@10 307 2, 2, 2, 4, 4, 4,
yading@10 308 6, 6, 6, 8, 8, 8,
yading@10 309 10, 10, 10, 12, 12, 12,
yading@10 310 14, 14, 14, 14
yading@10 311 };
yading@10 312 static const uint16_t codes[] = {
yading@10 313 0x0000, 0x0001, 0x0002, // 00/01/10
yading@10 314 0x000c, 0x000d, 0x000e, // 11+00/01/10
yading@10 315 0x003c, 0x003d, 0x003e, // 1111+00/01/10
yading@10 316 0x00fc, 0x00fd, 0x00fe, // 111111+00/01/10
yading@10 317 0x03fc, 0x03fd, 0x03fe, // 11111111+00/01/10
yading@10 318 0x0ffc, 0x0ffd, 0x0ffe, // 1111111111+00/01/10
yading@10 319 0x3ffc, 0x3ffd, 0x3ffe, 0x3fff // 111111111111+xx
yading@10 320 };
yading@10 321 int cntr[8] = { 0 }, n, res;
yading@10 322
yading@10 323 memset(vbm_tree, 0xff, sizeof(vbm_tree[0]) * 25);
yading@10 324 for (n = 0; n < 17; n++) {
yading@10 325 res = get_bits(gb, 3);
yading@10 326 if (cntr[res] > 3) // should be >= 3 + (res == 7))
yading@10 327 return -1;
yading@10 328 vbm_tree[res * 3 + cntr[res]++] = n;
yading@10 329 }
yading@10 330 INIT_VLC_STATIC(&frame_type_vlc, VLC_NBITS, sizeof(bits),
yading@10 331 bits, 1, 1, codes, 2, 2, 132);
yading@10 332 return 0;
yading@10 333 }
yading@10 334
yading@10 335 /**
yading@10 336 * Set up decoder with parameters from demuxer (extradata etc.).
yading@10 337 */
yading@10 338 static av_cold int wmavoice_decode_init(AVCodecContext *ctx)
yading@10 339 {
yading@10 340 int n, flags, pitch_range, lsp16_flag;
yading@10 341 WMAVoiceContext *s = ctx->priv_data;
yading@10 342
yading@10 343 /**
yading@10 344 * Extradata layout:
yading@10 345 * - byte 0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c),
yading@10 346 * - byte 19-22: flags field (annoyingly in LE; see below for known
yading@10 347 * values),
yading@10 348 * - byte 23-46: variable bitmode tree (really just 17 * 3 bits,
yading@10 349 * rest is 0).
yading@10 350 */
yading@10 351 if (ctx->extradata_size != 46) {
yading@10 352 av_log(ctx, AV_LOG_ERROR,
yading@10 353 "Invalid extradata size %d (should be 46)\n",
yading@10 354 ctx->extradata_size);
yading@10 355 return -1;
yading@10 356 }
yading@10 357 flags = AV_RL32(ctx->extradata + 18);
yading@10 358 s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align);
yading@10 359 s->do_apf = flags & 0x1;
yading@10 360 if (s->do_apf) {
yading@10 361 ff_rdft_init(&s->rdft, 7, DFT_R2C);
yading@10 362 ff_rdft_init(&s->irdft, 7, IDFT_C2R);
yading@10 363 ff_dct_init(&s->dct, 6, DCT_I);
yading@10 364 ff_dct_init(&s->dst, 6, DST_I);
yading@10 365
yading@10 366 ff_sine_window_init(s->cos, 256);
yading@10 367 memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0]));
yading@10 368 for (n = 0; n < 255; n++) {
yading@10 369 s->sin[n] = -s->sin[510 - n];
yading@10 370 s->cos[510 - n] = s->cos[n];
yading@10 371 }
yading@10 372 }
yading@10 373 s->denoise_strength = (flags >> 2) & 0xF;
yading@10 374 if (s->denoise_strength >= 12) {
yading@10 375 av_log(ctx, AV_LOG_ERROR,
yading@10 376 "Invalid denoise filter strength %d (max=11)\n",
yading@10 377 s->denoise_strength);
yading@10 378 return -1;
yading@10 379 }
yading@10 380 s->denoise_tilt_corr = !!(flags & 0x40);
yading@10 381 s->dc_level = (flags >> 7) & 0xF;
yading@10 382 s->lsp_q_mode = !!(flags & 0x2000);
yading@10 383 s->lsp_def_mode = !!(flags & 0x4000);
yading@10 384 lsp16_flag = flags & 0x1000;
yading@10 385 if (lsp16_flag) {
yading@10 386 s->lsps = 16;
yading@10 387 s->frame_lsp_bitsize = 34;
yading@10 388 s->sframe_lsp_bitsize = 60;
yading@10 389 } else {
yading@10 390 s->lsps = 10;
yading@10 391 s->frame_lsp_bitsize = 24;
yading@10 392 s->sframe_lsp_bitsize = 48;
yading@10 393 }
yading@10 394 for (n = 0; n < s->lsps; n++)
yading@10 395 s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
yading@10 396
yading@10 397 init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3);
yading@10 398 if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) {
yading@10 399 av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n");
yading@10 400 return -1;
yading@10 401 }
yading@10 402
yading@10 403 s->min_pitch_val = ((ctx->sample_rate << 8) / 400 + 50) >> 8;
yading@10 404 s->max_pitch_val = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8;
yading@10 405 pitch_range = s->max_pitch_val - s->min_pitch_val;
yading@10 406 if (pitch_range <= 0) {
yading@10 407 av_log(ctx, AV_LOG_ERROR, "Invalid pitch range; broken extradata?\n");
yading@10 408 return -1;
yading@10 409 }
yading@10 410 s->pitch_nbits = av_ceil_log2(pitch_range);
yading@10 411 s->last_pitch_val = 40;
yading@10 412 s->last_acb_type = ACB_TYPE_NONE;
yading@10 413 s->history_nsamples = s->max_pitch_val + 8;
yading@10 414
yading@10 415 if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) {
yading@10 416 int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8,
yading@10 417 max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8;
yading@10 418
yading@10 419 av_log(ctx, AV_LOG_ERROR,
yading@10 420 "Unsupported samplerate %d (min=%d, max=%d)\n",
yading@10 421 ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz
yading@10 422
yading@10 423 return -1;
yading@10 424 }
yading@10 425
yading@10 426 s->block_conv_table[0] = s->min_pitch_val;
yading@10 427 s->block_conv_table[1] = (pitch_range * 25) >> 6;
yading@10 428 s->block_conv_table[2] = (pitch_range * 44) >> 6;
yading@10 429 s->block_conv_table[3] = s->max_pitch_val - 1;
yading@10 430 s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF;
yading@10 431 if (s->block_delta_pitch_hrange <= 0) {
yading@10 432 av_log(ctx, AV_LOG_ERROR, "Invalid delta pitch hrange; broken extradata?\n");
yading@10 433 return -1;
yading@10 434 }
yading@10 435 s->block_delta_pitch_nbits = 1 + av_ceil_log2(s->block_delta_pitch_hrange);
yading@10 436 s->block_pitch_range = s->block_conv_table[2] +
yading@10 437 s->block_conv_table[3] + 1 +
yading@10 438 2 * (s->block_conv_table[1] - 2 * s->min_pitch_val);
yading@10 439 s->block_pitch_nbits = av_ceil_log2(s->block_pitch_range);
yading@10 440
yading@10 441 ctx->channels = 1;
yading@10 442 ctx->channel_layout = AV_CH_LAYOUT_MONO;
yading@10 443 ctx->sample_fmt = AV_SAMPLE_FMT_FLT;
yading@10 444
yading@10 445 return 0;
yading@10 446 }
yading@10 447
yading@10 448 /**
yading@10 449 * @name Postfilter functions
yading@10 450 * Postfilter functions (gain control, wiener denoise filter, DC filter,
yading@10 451 * kalman smoothening, plus surrounding code to wrap it)
yading@10 452 * @{
yading@10 453 */
yading@10 454 /**
yading@10 455 * Adaptive gain control (as used in postfilter).
yading@10 456 *
yading@10 457 * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except
yading@10 458 * that the energy here is calculated using sum(abs(...)), whereas the
yading@10 459 * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)).
yading@10 460 *
yading@10 461 * @param out output buffer for filtered samples
yading@10 462 * @param in input buffer containing the samples as they are after the
yading@10 463 * postfilter steps so far
yading@10 464 * @param speech_synth input buffer containing speech synth before postfilter
yading@10 465 * @param size input buffer size
yading@10 466 * @param alpha exponential filter factor
yading@10 467 * @param gain_mem pointer to filter memory (single float)
yading@10 468 */
yading@10 469 static void adaptive_gain_control(float *out, const float *in,
yading@10 470 const float *speech_synth,
yading@10 471 int size, float alpha, float *gain_mem)
yading@10 472 {
yading@10 473 int i;
yading@10 474 float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor;
yading@10 475 float mem = *gain_mem;
yading@10 476
yading@10 477 for (i = 0; i < size; i++) {
yading@10 478 speech_energy += fabsf(speech_synth[i]);
yading@10 479 postfilter_energy += fabsf(in[i]);
yading@10 480 }
yading@10 481 gain_scale_factor = (1.0 - alpha) * speech_energy / postfilter_energy;
yading@10 482
yading@10 483 for (i = 0; i < size; i++) {
yading@10 484 mem = alpha * mem + gain_scale_factor;
yading@10 485 out[i] = in[i] * mem;
yading@10 486 }
yading@10 487
yading@10 488 *gain_mem = mem;
yading@10 489 }
yading@10 490
yading@10 491 /**
yading@10 492 * Kalman smoothing function.
yading@10 493 *
yading@10 494 * This function looks back pitch +/- 3 samples back into history to find
yading@10 495 * the best fitting curve (that one giving the optimal gain of the two
yading@10 496 * signals, i.e. the highest dot product between the two), and then
yading@10 497 * uses that signal history to smoothen the output of the speech synthesis
yading@10 498 * filter.
yading@10 499 *
yading@10 500 * @param s WMA Voice decoding context
yading@10 501 * @param pitch pitch of the speech signal
yading@10 502 * @param in input speech signal
yading@10 503 * @param out output pointer for smoothened signal
yading@10 504 * @param size input/output buffer size
yading@10 505 *
yading@10 506 * @returns -1 if no smoothening took place, e.g. because no optimal
yading@10 507 * fit could be found, or 0 on success.
yading@10 508 */
yading@10 509 static int kalman_smoothen(WMAVoiceContext *s, int pitch,
yading@10 510 const float *in, float *out, int size)
yading@10 511 {
yading@10 512 int n;
yading@10 513 float optimal_gain = 0, dot;
yading@10 514 const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)],
yading@10 515 *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)],
yading@10 516 *best_hist_ptr = NULL;
yading@10 517
yading@10 518 /* find best fitting point in history */
yading@10 519 do {
yading@10 520 dot = avpriv_scalarproduct_float_c(in, ptr, size);
yading@10 521 if (dot > optimal_gain) {
yading@10 522 optimal_gain = dot;
yading@10 523 best_hist_ptr = ptr;
yading@10 524 }
yading@10 525 } while (--ptr >= end);
yading@10 526
yading@10 527 if (optimal_gain <= 0)
yading@10 528 return -1;
yading@10 529 dot = avpriv_scalarproduct_float_c(best_hist_ptr, best_hist_ptr, size);
yading@10 530 if (dot <= 0) // would be 1.0
yading@10 531 return -1;
yading@10 532
yading@10 533 if (optimal_gain <= dot) {
yading@10 534 dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000
yading@10 535 } else
yading@10 536 dot = 0.625;
yading@10 537
yading@10 538 /* actual smoothing */
yading@10 539 for (n = 0; n < size; n++)
yading@10 540 out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]);
yading@10 541
yading@10 542 return 0;
yading@10 543 }
yading@10 544
yading@10 545 /**
yading@10 546 * Get the tilt factor of a formant filter from its transfer function
yading@10 547 * @see #tilt_factor() in amrnbdec.c, which does essentially the same,
yading@10 548 * but somehow (??) it does a speech synthesis filter in the
yading@10 549 * middle, which is missing here
yading@10 550 *
yading@10 551 * @param lpcs LPC coefficients
yading@10 552 * @param n_lpcs Size of LPC buffer
yading@10 553 * @returns the tilt factor
yading@10 554 */
yading@10 555 static float tilt_factor(const float *lpcs, int n_lpcs)
yading@10 556 {
yading@10 557 float rh0, rh1;
yading@10 558
yading@10 559 rh0 = 1.0 + avpriv_scalarproduct_float_c(lpcs, lpcs, n_lpcs);
yading@10 560 rh1 = lpcs[0] + avpriv_scalarproduct_float_c(lpcs, &lpcs[1], n_lpcs - 1);
yading@10 561
yading@10 562 return rh1 / rh0;
yading@10 563 }
yading@10 564
yading@10 565 /**
yading@10 566 * Derive denoise filter coefficients (in real domain) from the LPCs.
yading@10 567 */
yading@10 568 static void calc_input_response(WMAVoiceContext *s, float *lpcs,
yading@10 569 int fcb_type, float *coeffs, int remainder)
yading@10 570 {
yading@10 571 float last_coeff, min = 15.0, max = -15.0;
yading@10 572 float irange, angle_mul, gain_mul, range, sq;
yading@10 573 int n, idx;
yading@10 574
yading@10 575 /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */
yading@10 576 s->rdft.rdft_calc(&s->rdft, lpcs);
yading@10 577 #define log_range(var, assign) do { \
yading@10 578 float tmp = log10f(assign); var = tmp; \
yading@10 579 max = FFMAX(max, tmp); min = FFMIN(min, tmp); \
yading@10 580 } while (0)
yading@10 581 log_range(last_coeff, lpcs[1] * lpcs[1]);
yading@10 582 for (n = 1; n < 64; n++)
yading@10 583 log_range(lpcs[n], lpcs[n * 2] * lpcs[n * 2] +
yading@10 584 lpcs[n * 2 + 1] * lpcs[n * 2 + 1]);
yading@10 585 log_range(lpcs[0], lpcs[0] * lpcs[0]);
yading@10 586 #undef log_range
yading@10 587 range = max - min;
yading@10 588 lpcs[64] = last_coeff;
yading@10 589
yading@10 590 /* Now, use this spectrum to pick out these frequencies with higher
yading@10 591 * (relative) power/energy (which we then take to be "not noise"),
yading@10 592 * and set up a table (still in lpc[]) of (relative) gains per frequency.
yading@10 593 * These frequencies will be maintained, while others ("noise") will be
yading@10 594 * decreased in the filter output. */
yading@10 595 irange = 64.0 / range; // so irange*(max-value) is in the range [0, 63]
yading@10 596 gain_mul = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) :
yading@10 597 (5.0 / 14.7));
yading@10 598 angle_mul = gain_mul * (8.0 * M_LN10 / M_PI);
yading@10 599 for (n = 0; n <= 64; n++) {
yading@10 600 float pwr;
yading@10 601
yading@10 602 idx = FFMAX(0, lrint((max - lpcs[n]) * irange) - 1);
yading@10 603 pwr = wmavoice_denoise_power_table[s->denoise_strength][idx];
yading@10 604 lpcs[n] = angle_mul * pwr;
yading@10 605
yading@10 606 /* 70.57 =~ 1/log10(1.0331663) */
yading@10 607 idx = (pwr * gain_mul - 0.0295) * 70.570526123;
yading@10 608 if (idx > 127) { // fallback if index falls outside table range
yading@10 609 coeffs[n] = wmavoice_energy_table[127] *
yading@10 610 powf(1.0331663, idx - 127);
yading@10 611 } else
yading@10 612 coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)];
yading@10 613 }
yading@10 614
yading@10 615 /* calculate the Hilbert transform of the gains, which we do (since this
yading@10 616 * is a sinus input) by doing a phase shift (in theory, H(sin())=cos()).
yading@10 617 * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the
yading@10 618 * "moment" of the LPCs in this filter. */
yading@10 619 s->dct.dct_calc(&s->dct, lpcs);
yading@10 620 s->dst.dct_calc(&s->dst, lpcs);
yading@10 621
yading@10 622 /* Split out the coefficient indexes into phase/magnitude pairs */
yading@10 623 idx = 255 + av_clip(lpcs[64], -255, 255);
yading@10 624 coeffs[0] = coeffs[0] * s->cos[idx];
yading@10 625 idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255);
yading@10 626 last_coeff = coeffs[64] * s->cos[idx];
yading@10 627 for (n = 63;; n--) {
yading@10 628 idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255);
yading@10 629 coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
yading@10 630 coeffs[n * 2] = coeffs[n] * s->cos[idx];
yading@10 631
yading@10 632 if (!--n) break;
yading@10 633
yading@10 634 idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255);
yading@10 635 coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
yading@10 636 coeffs[n * 2] = coeffs[n] * s->cos[idx];
yading@10 637 }
yading@10 638 coeffs[1] = last_coeff;
yading@10 639
yading@10 640 /* move into real domain */
yading@10 641 s->irdft.rdft_calc(&s->irdft, coeffs);
yading@10 642
yading@10 643 /* tilt correction and normalize scale */
yading@10 644 memset(&coeffs[remainder], 0, sizeof(coeffs[0]) * (128 - remainder));
yading@10 645 if (s->denoise_tilt_corr) {
yading@10 646 float tilt_mem = 0;
yading@10 647
yading@10 648 coeffs[remainder - 1] = 0;
yading@10 649 ff_tilt_compensation(&tilt_mem,
yading@10 650 -1.8 * tilt_factor(coeffs, remainder - 1),
yading@10 651 coeffs, remainder);
yading@10 652 }
yading@10 653 sq = (1.0 / 64.0) * sqrtf(1 / avpriv_scalarproduct_float_c(coeffs, coeffs,
yading@10 654 remainder));
yading@10 655 for (n = 0; n < remainder; n++)
yading@10 656 coeffs[n] *= sq;
yading@10 657 }
yading@10 658
yading@10 659 /**
yading@10 660 * This function applies a Wiener filter on the (noisy) speech signal as
yading@10 661 * a means to denoise it.
yading@10 662 *
yading@10 663 * - take RDFT of LPCs to get the power spectrum of the noise + speech;
yading@10 664 * - using this power spectrum, calculate (for each frequency) the Wiener
yading@10 665 * filter gain, which depends on the frequency power and desired level
yading@10 666 * of noise subtraction (when set too high, this leads to artifacts)
yading@10 667 * We can do this symmetrically over the X-axis (so 0-4kHz is the inverse
yading@10 668 * of 4-8kHz);
yading@10 669 * - by doing a phase shift, calculate the Hilbert transform of this array
yading@10 670 * of per-frequency filter-gains to get the filtering coefficients;
yading@10 671 * - smoothen/normalize/de-tilt these filter coefficients as desired;
yading@10 672 * - take RDFT of noisy sound, apply the coefficients and take its IRDFT
yading@10 673 * to get the denoised speech signal;
yading@10 674 * - the leftover (i.e. output of the IRDFT on denoised speech data beyond
yading@10 675 * the frame boundary) are saved and applied to subsequent frames by an
yading@10 676 * overlap-add method (otherwise you get clicking-artifacts).
yading@10 677 *
yading@10 678 * @param s WMA Voice decoding context
yading@10 679 * @param fcb_type Frame (codebook) type
yading@10 680 * @param synth_pf input: the noisy speech signal, output: denoised speech
yading@10 681 * data; should be 16-byte aligned (for ASM purposes)
yading@10 682 * @param size size of the speech data
yading@10 683 * @param lpcs LPCs used to synthesize this frame's speech data
yading@10 684 */
yading@10 685 static void wiener_denoise(WMAVoiceContext *s, int fcb_type,
yading@10 686 float *synth_pf, int size,
yading@10 687 const float *lpcs)
yading@10 688 {
yading@10 689 int remainder, lim, n;
yading@10 690
yading@10 691 if (fcb_type != FCB_TYPE_SILENCE) {
yading@10 692 float *tilted_lpcs = s->tilted_lpcs_pf,
yading@10 693 *coeffs = s->denoise_coeffs_pf, tilt_mem = 0;
yading@10 694
yading@10 695 tilted_lpcs[0] = 1.0;
yading@10 696 memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps);
yading@10 697 memset(&tilted_lpcs[s->lsps + 1], 0,
yading@10 698 sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1));
yading@10 699 ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps),
yading@10 700 tilted_lpcs, s->lsps + 2);
yading@10 701
yading@10 702 /* The IRDFT output (127 samples for 7-bit filter) beyond the frame
yading@10 703 * size is applied to the next frame. All input beyond this is zero,
yading@10 704 * and thus all output beyond this will go towards zero, hence we can
yading@10 705 * limit to min(size-1, 127-size) as a performance consideration. */
yading@10 706 remainder = FFMIN(127 - size, size - 1);
yading@10 707 calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder);
yading@10 708
yading@10 709 /* apply coefficients (in frequency spectrum domain), i.e. complex
yading@10 710 * number multiplication */
yading@10 711 memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size));
yading@10 712 s->rdft.rdft_calc(&s->rdft, synth_pf);
yading@10 713 s->rdft.rdft_calc(&s->rdft, coeffs);
yading@10 714 synth_pf[0] *= coeffs[0];
yading@10 715 synth_pf[1] *= coeffs[1];
yading@10 716 for (n = 1; n < 64; n++) {
yading@10 717 float v1 = synth_pf[n * 2], v2 = synth_pf[n * 2 + 1];
yading@10 718 synth_pf[n * 2] = v1 * coeffs[n * 2] - v2 * coeffs[n * 2 + 1];
yading@10 719 synth_pf[n * 2 + 1] = v2 * coeffs[n * 2] + v1 * coeffs[n * 2 + 1];
yading@10 720 }
yading@10 721 s->irdft.rdft_calc(&s->irdft, synth_pf);
yading@10 722 }
yading@10 723
yading@10 724 /* merge filter output with the history of previous runs */
yading@10 725 if (s->denoise_filter_cache_size) {
yading@10 726 lim = FFMIN(s->denoise_filter_cache_size, size);
yading@10 727 for (n = 0; n < lim; n++)
yading@10 728 synth_pf[n] += s->denoise_filter_cache[n];
yading@10 729 s->denoise_filter_cache_size -= lim;
yading@10 730 memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size],
yading@10 731 sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size);
yading@10 732 }
yading@10 733
yading@10 734 /* move remainder of filter output into a cache for future runs */
yading@10 735 if (fcb_type != FCB_TYPE_SILENCE) {
yading@10 736 lim = FFMIN(remainder, s->denoise_filter_cache_size);
yading@10 737 for (n = 0; n < lim; n++)
yading@10 738 s->denoise_filter_cache[n] += synth_pf[size + n];
yading@10 739 if (lim < remainder) {
yading@10 740 memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim],
yading@10 741 sizeof(s->denoise_filter_cache[0]) * (remainder - lim));
yading@10 742 s->denoise_filter_cache_size = remainder;
yading@10 743 }
yading@10 744 }
yading@10 745 }
yading@10 746
yading@10 747 /**
yading@10 748 * Averaging projection filter, the postfilter used in WMAVoice.
yading@10 749 *
yading@10 750 * This uses the following steps:
yading@10 751 * - A zero-synthesis filter (generate excitation from synth signal)
yading@10 752 * - Kalman smoothing on excitation, based on pitch
yading@10 753 * - Re-synthesized smoothened output
yading@10 754 * - Iterative Wiener denoise filter
yading@10 755 * - Adaptive gain filter
yading@10 756 * - DC filter
yading@10 757 *
yading@10 758 * @param s WMAVoice decoding context
yading@10 759 * @param synth Speech synthesis output (before postfilter)
yading@10 760 * @param samples Output buffer for filtered samples
yading@10 761 * @param size Buffer size of synth & samples
yading@10 762 * @param lpcs Generated LPCs used for speech synthesis
yading@10 763 * @param zero_exc_pf destination for zero synthesis filter (16-byte aligned)
yading@10 764 * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses)
yading@10 765 * @param pitch Pitch of the input signal
yading@10 766 */
yading@10 767 static void postfilter(WMAVoiceContext *s, const float *synth,
yading@10 768 float *samples, int size,
yading@10 769 const float *lpcs, float *zero_exc_pf,
yading@10 770 int fcb_type, int pitch)
yading@10 771 {
yading@10 772 float synth_filter_in_buf[MAX_FRAMESIZE / 2],
yading@10 773 *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16],
yading@10 774 *synth_filter_in = zero_exc_pf;
yading@10 775
yading@10 776 av_assert0(size <= MAX_FRAMESIZE / 2);
yading@10 777
yading@10 778 /* generate excitation from input signal */
yading@10 779 ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps);
yading@10 780
yading@10 781 if (fcb_type >= FCB_TYPE_AW_PULSES &&
yading@10 782 !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size))
yading@10 783 synth_filter_in = synth_filter_in_buf;
yading@10 784
yading@10 785 /* re-synthesize speech after smoothening, and keep history */
yading@10 786 ff_celp_lp_synthesis_filterf(synth_pf, lpcs,
yading@10 787 synth_filter_in, size, s->lsps);
yading@10 788 memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps],
yading@10 789 sizeof(synth_pf[0]) * s->lsps);
yading@10 790
yading@10 791 wiener_denoise(s, fcb_type, synth_pf, size, lpcs);
yading@10 792
yading@10 793 adaptive_gain_control(samples, synth_pf, synth, size, 0.99,
yading@10 794 &s->postfilter_agc);
yading@10 795
yading@10 796 if (s->dc_level > 8) {
yading@10 797 /* remove ultra-low frequency DC noise / highpass filter;
yading@10 798 * coefficients are identical to those used in SIPR decoding,
yading@10 799 * and very closely resemble those used in AMR-NB decoding. */
yading@10 800 ff_acelp_apply_order_2_transfer_function(samples, samples,
yading@10 801 (const float[2]) { -1.99997, 1.0 },
yading@10 802 (const float[2]) { -1.9330735188, 0.93589198496 },
yading@10 803 0.93980580475, s->dcf_mem, size);
yading@10 804 }
yading@10 805 }
yading@10 806 /**
yading@10 807 * @}
yading@10 808 */
yading@10 809
yading@10 810 /**
yading@10 811 * Dequantize LSPs
yading@10 812 * @param lsps output pointer to the array that will hold the LSPs
yading@10 813 * @param num number of LSPs to be dequantized
yading@10 814 * @param values quantized values, contains n_stages values
yading@10 815 * @param sizes range (i.e. max value) of each quantized value
yading@10 816 * @param n_stages number of dequantization runs
yading@10 817 * @param table dequantization table to be used
yading@10 818 * @param mul_q LSF multiplier
yading@10 819 * @param base_q base (lowest) LSF values
yading@10 820 */
yading@10 821 static void dequant_lsps(double *lsps, int num,
yading@10 822 const uint16_t *values,
yading@10 823 const uint16_t *sizes,
yading@10 824 int n_stages, const uint8_t *table,
yading@10 825 const double *mul_q,
yading@10 826 const double *base_q)
yading@10 827 {
yading@10 828 int n, m;
yading@10 829
yading@10 830 memset(lsps, 0, num * sizeof(*lsps));
yading@10 831 for (n = 0; n < n_stages; n++) {
yading@10 832 const uint8_t *t_off = &table[values[n] * num];
yading@10 833 double base = base_q[n], mul = mul_q[n];
yading@10 834
yading@10 835 for (m = 0; m < num; m++)
yading@10 836 lsps[m] += base + mul * t_off[m];
yading@10 837
yading@10 838 table += sizes[n] * num;
yading@10 839 }
yading@10 840 }
yading@10 841
yading@10 842 /**
yading@10 843 * @name LSP dequantization routines
yading@10 844 * LSP dequantization routines, for 10/16LSPs and independent/residual coding.
yading@10 845 * @note we assume enough bits are available, caller should check.
yading@10 846 * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits;
yading@10 847 * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits.
yading@10 848 * @{
yading@10 849 */
yading@10 850 /**
yading@10 851 * Parse 10 independently-coded LSPs.
yading@10 852 */
yading@10 853 static void dequant_lsp10i(GetBitContext *gb, double *lsps)
yading@10 854 {
yading@10 855 static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 };
yading@10 856 static const double mul_lsf[4] = {
yading@10 857 5.2187144800e-3, 1.4626986422e-3,
yading@10 858 9.6179549166e-4, 1.1325736225e-3
yading@10 859 };
yading@10 860 static const double base_lsf[4] = {
yading@10 861 M_PI * -2.15522e-1, M_PI * -6.1646e-2,
yading@10 862 M_PI * -3.3486e-2, M_PI * -5.7408e-2
yading@10 863 };
yading@10 864 uint16_t v[4];
yading@10 865
yading@10 866 v[0] = get_bits(gb, 8);
yading@10 867 v[1] = get_bits(gb, 6);
yading@10 868 v[2] = get_bits(gb, 5);
yading@10 869 v[3] = get_bits(gb, 5);
yading@10 870
yading@10 871 dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i,
yading@10 872 mul_lsf, base_lsf);
yading@10 873 }
yading@10 874
yading@10 875 /**
yading@10 876 * Parse 10 independently-coded LSPs, and then derive the tables to
yading@10 877 * generate LSPs for the other frames from them (residual coding).
yading@10 878 */
yading@10 879 static void dequant_lsp10r(GetBitContext *gb,
yading@10 880 double *i_lsps, const double *old,
yading@10 881 double *a1, double *a2, int q_mode)
yading@10 882 {
yading@10 883 static const uint16_t vec_sizes[3] = { 128, 64, 64 };
yading@10 884 static const double mul_lsf[3] = {
yading@10 885 2.5807601174e-3, 1.2354460219e-3, 1.1763821673e-3
yading@10 886 };
yading@10 887 static const double base_lsf[3] = {
yading@10 888 M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2
yading@10 889 };
yading@10 890 const float (*ipol_tab)[2][10] = q_mode ?
yading@10 891 wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a;
yading@10 892 uint16_t interpol, v[3];
yading@10 893 int n;
yading@10 894
yading@10 895 dequant_lsp10i(gb, i_lsps);
yading@10 896
yading@10 897 interpol = get_bits(gb, 5);
yading@10 898 v[0] = get_bits(gb, 7);
yading@10 899 v[1] = get_bits(gb, 6);
yading@10 900 v[2] = get_bits(gb, 6);
yading@10 901
yading@10 902 for (n = 0; n < 10; n++) {
yading@10 903 double delta = old[n] - i_lsps[n];
yading@10 904 a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
yading@10 905 a1[10 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
yading@10 906 }
yading@10 907
yading@10 908 dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r,
yading@10 909 mul_lsf, base_lsf);
yading@10 910 }
yading@10 911
yading@10 912 /**
yading@10 913 * Parse 16 independently-coded LSPs.
yading@10 914 */
yading@10 915 static void dequant_lsp16i(GetBitContext *gb, double *lsps)
yading@10 916 {
yading@10 917 static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 };
yading@10 918 static const double mul_lsf[5] = {
yading@10 919 3.3439586280e-3, 6.9908173703e-4,
yading@10 920 3.3216608306e-3, 1.0334960326e-3,
yading@10 921 3.1899104283e-3
yading@10 922 };
yading@10 923 static const double base_lsf[5] = {
yading@10 924 M_PI * -1.27576e-1, M_PI * -2.4292e-2,
yading@10 925 M_PI * -1.28094e-1, M_PI * -3.2128e-2,
yading@10 926 M_PI * -1.29816e-1
yading@10 927 };
yading@10 928 uint16_t v[5];
yading@10 929
yading@10 930 v[0] = get_bits(gb, 8);
yading@10 931 v[1] = get_bits(gb, 6);
yading@10 932 v[2] = get_bits(gb, 7);
yading@10 933 v[3] = get_bits(gb, 6);
yading@10 934 v[4] = get_bits(gb, 7);
yading@10 935
yading@10 936 dequant_lsps( lsps, 5, v, vec_sizes, 2,
yading@10 937 wmavoice_dq_lsp16i1, mul_lsf, base_lsf);
yading@10 938 dequant_lsps(&lsps[5], 5, &v[2], &vec_sizes[2], 2,
yading@10 939 wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]);
yading@10 940 dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1,
yading@10 941 wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]);
yading@10 942 }
yading@10 943
yading@10 944 /**
yading@10 945 * Parse 16 independently-coded LSPs, and then derive the tables to
yading@10 946 * generate LSPs for the other frames from them (residual coding).
yading@10 947 */
yading@10 948 static void dequant_lsp16r(GetBitContext *gb,
yading@10 949 double *i_lsps, const double *old,
yading@10 950 double *a1, double *a2, int q_mode)
yading@10 951 {
yading@10 952 static const uint16_t vec_sizes[3] = { 128, 128, 128 };
yading@10 953 static const double mul_lsf[3] = {
yading@10 954 1.2232979501e-3, 1.4062241527e-3, 1.6114744851e-3
yading@10 955 };
yading@10 956 static const double base_lsf[3] = {
yading@10 957 M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2
yading@10 958 };
yading@10 959 const float (*ipol_tab)[2][16] = q_mode ?
yading@10 960 wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a;
yading@10 961 uint16_t interpol, v[3];
yading@10 962 int n;
yading@10 963
yading@10 964 dequant_lsp16i(gb, i_lsps);
yading@10 965
yading@10 966 interpol = get_bits(gb, 5);
yading@10 967 v[0] = get_bits(gb, 7);
yading@10 968 v[1] = get_bits(gb, 7);
yading@10 969 v[2] = get_bits(gb, 7);
yading@10 970
yading@10 971 for (n = 0; n < 16; n++) {
yading@10 972 double delta = old[n] - i_lsps[n];
yading@10 973 a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
yading@10 974 a1[16 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
yading@10 975 }
yading@10 976
yading@10 977 dequant_lsps( a2, 10, v, vec_sizes, 1,
yading@10 978 wmavoice_dq_lsp16r1, mul_lsf, base_lsf);
yading@10 979 dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1,
yading@10 980 wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]);
yading@10 981 dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1,
yading@10 982 wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]);
yading@10 983 }
yading@10 984
yading@10 985 /**
yading@10 986 * @}
yading@10 987 * @name Pitch-adaptive window coding functions
yading@10 988 * The next few functions are for pitch-adaptive window coding.
yading@10 989 * @{
yading@10 990 */
yading@10 991 /**
yading@10 992 * Parse the offset of the first pitch-adaptive window pulses, and
yading@10 993 * the distribution of pulses between the two blocks in this frame.
yading@10 994 * @param s WMA Voice decoding context private data
yading@10 995 * @param gb bit I/O context
yading@10 996 * @param pitch pitch for each block in this frame
yading@10 997 */
yading@10 998 static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb,
yading@10 999 const int *pitch)
yading@10 1000 {
yading@10 1001 static const int16_t start_offset[94] = {
yading@10 1002 -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11,
yading@10 1003 13, 15, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26,
yading@10 1004 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43,
yading@10 1005 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
yading@10 1006 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91,
yading@10 1007 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,
yading@10 1008 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139,
yading@10 1009 141, 143, 145, 147, 149, 151, 153, 155, 157, 159
yading@10 1010 };
yading@10 1011 int bits, offset;
yading@10 1012
yading@10 1013 /* position of pulse */
yading@10 1014 s->aw_idx_is_ext = 0;
yading@10 1015 if ((bits = get_bits(gb, 6)) >= 54) {
yading@10 1016 s->aw_idx_is_ext = 1;
yading@10 1017 bits += (bits - 54) * 3 + get_bits(gb, 2);
yading@10 1018 }
yading@10 1019
yading@10 1020 /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count
yading@10 1021 * the distribution of the pulses in each block contained in this frame. */
yading@10 1022 s->aw_pulse_range = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16;
yading@10 1023 for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ;
yading@10 1024 s->aw_n_pulses[0] = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0];
yading@10 1025 s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2;
yading@10 1026 offset += s->aw_n_pulses[0] * pitch[0];
yading@10 1027 s->aw_n_pulses[1] = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1];
yading@10 1028 s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2;
yading@10 1029
yading@10 1030 /* if continuing from a position before the block, reset position to
yading@10 1031 * start of block (when corrected for the range over which it can be
yading@10 1032 * spread in aw_pulse_set1()). */
yading@10 1033 if (start_offset[bits] < MAX_FRAMESIZE / 2) {
yading@10 1034 while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0)
yading@10 1035 s->aw_first_pulse_off[1] -= pitch[1];
yading@10 1036 if (start_offset[bits] < 0)
yading@10 1037 while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0)
yading@10 1038 s->aw_first_pulse_off[0] -= pitch[0];
yading@10 1039 }
yading@10 1040 }
yading@10 1041
yading@10 1042 /**
yading@10 1043 * Apply second set of pitch-adaptive window pulses.
yading@10 1044 * @param s WMA Voice decoding context private data
yading@10 1045 * @param gb bit I/O context
yading@10 1046 * @param block_idx block index in frame [0, 1]
yading@10 1047 * @param fcb structure containing fixed codebook vector info
yading@10 1048 */
yading@10 1049 static void aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb,
yading@10 1050 int block_idx, AMRFixed *fcb)
yading@10 1051 {
yading@10 1052 uint16_t use_mask_mem[9]; // only 5 are used, rest is padding
yading@10 1053 uint16_t *use_mask = use_mask_mem + 2;
yading@10 1054 /* in this function, idx is the index in the 80-bit (+ padding) use_mask
yading@10 1055 * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits
yading@10 1056 * of idx are the position of the bit within a particular item in the
yading@10 1057 * array (0 being the most significant bit, and 15 being the least
yading@10 1058 * significant bit), and the remainder (>> 4) is the index in the
yading@10 1059 * use_mask[]-array. This is faster and uses less memory than using a
yading@10 1060 * 80-byte/80-int array. */
yading@10 1061 int pulse_off = s->aw_first_pulse_off[block_idx],
yading@10 1062 pulse_start, n, idx, range, aidx, start_off = 0;
yading@10 1063
yading@10 1064 /* set offset of first pulse to within this block */
yading@10 1065 if (s->aw_n_pulses[block_idx] > 0)
yading@10 1066 while (pulse_off + s->aw_pulse_range < 1)
yading@10 1067 pulse_off += fcb->pitch_lag;
yading@10 1068
yading@10 1069 /* find range per pulse */
yading@10 1070 if (s->aw_n_pulses[0] > 0) {
yading@10 1071 if (block_idx == 0) {
yading@10 1072 range = 32;
yading@10 1073 } else /* block_idx = 1 */ {
yading@10 1074 range = 8;
yading@10 1075 if (s->aw_n_pulses[block_idx] > 0)
yading@10 1076 pulse_off = s->aw_next_pulse_off_cache;
yading@10 1077 }
yading@10 1078 } else
yading@10 1079 range = 16;
yading@10 1080 pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0;
yading@10 1081
yading@10 1082 /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly,
yading@10 1083 * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus
yading@10 1084 * we exclude that range from being pulsed again in this function. */
yading@10 1085 memset(&use_mask[-2], 0, 2 * sizeof(use_mask[0]));
yading@10 1086 memset( use_mask, -1, 5 * sizeof(use_mask[0]));
yading@10 1087 memset(&use_mask[5], 0, 2 * sizeof(use_mask[0]));
yading@10 1088 if (s->aw_n_pulses[block_idx] > 0)
yading@10 1089 for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) {
yading@10 1090 int excl_range = s->aw_pulse_range; // always 16 or 24
yading@10 1091 uint16_t *use_mask_ptr = &use_mask[idx >> 4];
yading@10 1092 int first_sh = 16 - (idx & 15);
yading@10 1093 *use_mask_ptr++ &= 0xFFFFu << first_sh;
yading@10 1094 excl_range -= first_sh;
yading@10 1095 if (excl_range >= 16) {
yading@10 1096 *use_mask_ptr++ = 0;
yading@10 1097 *use_mask_ptr &= 0xFFFF >> (excl_range - 16);
yading@10 1098 } else
yading@10 1099 *use_mask_ptr &= 0xFFFF >> excl_range;
yading@10 1100 }
yading@10 1101
yading@10 1102 /* find the 'aidx'th offset that is not excluded */
yading@10 1103 aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4);
yading@10 1104 for (n = 0; n <= aidx; pulse_start++) {
yading@10 1105 for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ;
yading@10 1106 if (idx >= MAX_FRAMESIZE / 2) { // find from zero
yading@10 1107 if (use_mask[0]) idx = 0x0F;
yading@10 1108 else if (use_mask[1]) idx = 0x1F;
yading@10 1109 else if (use_mask[2]) idx = 0x2F;
yading@10 1110 else if (use_mask[3]) idx = 0x3F;
yading@10 1111 else if (use_mask[4]) idx = 0x4F;
yading@10 1112 else return;
yading@10 1113 idx -= av_log2_16bit(use_mask[idx >> 4]);
yading@10 1114 }
yading@10 1115 if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
yading@10 1116 use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
yading@10 1117 n++;
yading@10 1118 start_off = idx;
yading@10 1119 }
yading@10 1120 }
yading@10 1121
yading@10 1122 fcb->x[fcb->n] = start_off;
yading@10 1123 fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0;
yading@10 1124 fcb->n++;
yading@10 1125
yading@10 1126 /* set offset for next block, relative to start of that block */
yading@10 1127 n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag;
yading@10 1128 s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0;
yading@10 1129 }
yading@10 1130
yading@10 1131 /**
yading@10 1132 * Apply first set of pitch-adaptive window pulses.
yading@10 1133 * @param s WMA Voice decoding context private data
yading@10 1134 * @param gb bit I/O context
yading@10 1135 * @param block_idx block index in frame [0, 1]
yading@10 1136 * @param fcb storage location for fixed codebook pulse info
yading@10 1137 */
yading@10 1138 static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb,
yading@10 1139 int block_idx, AMRFixed *fcb)
yading@10 1140 {
yading@10 1141 int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx));
yading@10 1142 float v;
yading@10 1143
yading@10 1144 if (s->aw_n_pulses[block_idx] > 0) {
yading@10 1145 int n, v_mask, i_mask, sh, n_pulses;
yading@10 1146
yading@10 1147 if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each
yading@10 1148 n_pulses = 3;
yading@10 1149 v_mask = 8;
yading@10 1150 i_mask = 7;
yading@10 1151 sh = 4;
yading@10 1152 } else { // 4 pulses, 1:sign + 2:index each
yading@10 1153 n_pulses = 4;
yading@10 1154 v_mask = 4;
yading@10 1155 i_mask = 3;
yading@10 1156 sh = 3;
yading@10 1157 }
yading@10 1158
yading@10 1159 for (n = n_pulses - 1; n >= 0; n--, val >>= sh) {
yading@10 1160 fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0;
yading@10 1161 fcb->x[fcb->n] = (val & i_mask) * n_pulses + n +
yading@10 1162 s->aw_first_pulse_off[block_idx];
yading@10 1163 while (fcb->x[fcb->n] < 0)
yading@10 1164 fcb->x[fcb->n] += fcb->pitch_lag;
yading@10 1165 if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2)
yading@10 1166 fcb->n++;
yading@10 1167 }
yading@10 1168 } else {
yading@10 1169 int num2 = (val & 0x1FF) >> 1, delta, idx;
yading@10 1170
yading@10 1171 if (num2 < 1 * 79) { delta = 1; idx = num2 + 1; }
yading@10 1172 else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; }
yading@10 1173 else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; }
yading@10 1174 else { delta = 7; idx = num2 + 1 - 3 * 75; }
yading@10 1175 v = (val & 0x200) ? -1.0 : 1.0;
yading@10 1176
yading@10 1177 fcb->no_repeat_mask |= 3 << fcb->n;
yading@10 1178 fcb->x[fcb->n] = idx - delta;
yading@10 1179 fcb->y[fcb->n] = v;
yading@10 1180 fcb->x[fcb->n + 1] = idx;
yading@10 1181 fcb->y[fcb->n + 1] = (val & 1) ? -v : v;
yading@10 1182 fcb->n += 2;
yading@10 1183 }
yading@10 1184 }
yading@10 1185
yading@10 1186 /**
yading@10 1187 * @}
yading@10 1188 *
yading@10 1189 * Generate a random number from frame_cntr and block_idx, which will lief
yading@10 1190 * in the range [0, 1000 - block_size] (so it can be used as an index in a
yading@10 1191 * table of size 1000 of which you want to read block_size entries).
yading@10 1192 *
yading@10 1193 * @param frame_cntr current frame number
yading@10 1194 * @param block_num current block index
yading@10 1195 * @param block_size amount of entries we want to read from a table
yading@10 1196 * that has 1000 entries
yading@10 1197 * @return a (non-)random number in the [0, 1000 - block_size] range.
yading@10 1198 */
yading@10 1199 static int pRNG(int frame_cntr, int block_num, int block_size)
yading@10 1200 {
yading@10 1201 /* array to simplify the calculation of z:
yading@10 1202 * y = (x % 9) * 5 + 6;
yading@10 1203 * z = (49995 * x) / y;
yading@10 1204 * Since y only has 9 values, we can remove the division by using a
yading@10 1205 * LUT and using FASTDIV-style divisions. For each of the 9 values
yading@10 1206 * of y, we can rewrite z as:
yading@10 1207 * z = x * (49995 / y) + x * ((49995 % y) / y)
yading@10 1208 * In this table, each col represents one possible value of y, the
yading@10 1209 * first number is 49995 / y, and the second is the FASTDIV variant
yading@10 1210 * of 49995 % y / y. */
yading@10 1211 static const unsigned int div_tbl[9][2] = {
yading@10 1212 { 8332, 3 * 715827883U }, // y = 6
yading@10 1213 { 4545, 0 * 390451573U }, // y = 11
yading@10 1214 { 3124, 11 * 268435456U }, // y = 16
yading@10 1215 { 2380, 15 * 204522253U }, // y = 21
yading@10 1216 { 1922, 23 * 165191050U }, // y = 26
yading@10 1217 { 1612, 23 * 138547333U }, // y = 31
yading@10 1218 { 1388, 27 * 119304648U }, // y = 36
yading@10 1219 { 1219, 16 * 104755300U }, // y = 41
yading@10 1220 { 1086, 39 * 93368855U } // y = 46
yading@10 1221 };
yading@10 1222 unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr;
yading@10 1223 if (x >= 0xFFFF) x -= 0xFFFF; // max value of x is 8*1877+0xFFFE=0x13AA6,
yading@10 1224 // so this is effectively a modulo (%)
yading@10 1225 y = x - 9 * MULH(477218589, x); // x % 9
yading@10 1226 z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1]));
yading@10 1227 // z = x * 49995 / (y * 5 + 6)
yading@10 1228 return z % (1000 - block_size);
yading@10 1229 }
yading@10 1230
yading@10 1231 /**
yading@10 1232 * Parse hardcoded signal for a single block.
yading@10 1233 * @note see #synth_block().
yading@10 1234 */
yading@10 1235 static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb,
yading@10 1236 int block_idx, int size,
yading@10 1237 const struct frame_type_desc *frame_desc,
yading@10 1238 float *excitation)
yading@10 1239 {
yading@10 1240 float gain;
yading@10 1241 int n, r_idx;
yading@10 1242
yading@10 1243 av_assert0(size <= MAX_FRAMESIZE);
yading@10 1244
yading@10 1245 /* Set the offset from which we start reading wmavoice_std_codebook */
yading@10 1246 if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
yading@10 1247 r_idx = pRNG(s->frame_cntr, block_idx, size);
yading@10 1248 gain = s->silence_gain;
yading@10 1249 } else /* FCB_TYPE_HARDCODED */ {
yading@10 1250 r_idx = get_bits(gb, 8);
yading@10 1251 gain = wmavoice_gain_universal[get_bits(gb, 6)];
yading@10 1252 }
yading@10 1253
yading@10 1254 /* Clear gain prediction parameters */
yading@10 1255 memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err));
yading@10 1256
yading@10 1257 /* Apply gain to hardcoded codebook and use that as excitation signal */
yading@10 1258 for (n = 0; n < size; n++)
yading@10 1259 excitation[n] = wmavoice_std_codebook[r_idx + n] * gain;
yading@10 1260 }
yading@10 1261
yading@10 1262 /**
yading@10 1263 * Parse FCB/ACB signal for a single block.
yading@10 1264 * @note see #synth_block().
yading@10 1265 */
yading@10 1266 static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb,
yading@10 1267 int block_idx, int size,
yading@10 1268 int block_pitch_sh2,
yading@10 1269 const struct frame_type_desc *frame_desc,
yading@10 1270 float *excitation)
yading@10 1271 {
yading@10 1272 static const float gain_coeff[6] = {
yading@10 1273 0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458
yading@10 1274 };
yading@10 1275 float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain;
yading@10 1276 int n, idx, gain_weight;
yading@10 1277 AMRFixed fcb;
yading@10 1278
yading@10 1279 av_assert0(size <= MAX_FRAMESIZE / 2);
yading@10 1280 memset(pulses, 0, sizeof(*pulses) * size);
yading@10 1281
yading@10 1282 fcb.pitch_lag = block_pitch_sh2 >> 2;
yading@10 1283 fcb.pitch_fac = 1.0;
yading@10 1284 fcb.no_repeat_mask = 0;
yading@10 1285 fcb.n = 0;
yading@10 1286
yading@10 1287 /* For the other frame types, this is where we apply the innovation
yading@10 1288 * (fixed) codebook pulses of the speech signal. */
yading@10 1289 if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
yading@10 1290 aw_pulse_set1(s, gb, block_idx, &fcb);
yading@10 1291 aw_pulse_set2(s, gb, block_idx, &fcb);
yading@10 1292 } else /* FCB_TYPE_EXC_PULSES */ {
yading@10 1293 int offset_nbits = 5 - frame_desc->log_n_blocks;
yading@10 1294
yading@10 1295 fcb.no_repeat_mask = -1;
yading@10 1296 /* similar to ff_decode_10_pulses_35bits(), but with single pulses
yading@10 1297 * (instead of double) for a subset of pulses */
yading@10 1298 for (n = 0; n < 5; n++) {
yading@10 1299 float sign;
yading@10 1300 int pos1, pos2;
yading@10 1301
yading@10 1302 sign = get_bits1(gb) ? 1.0 : -1.0;
yading@10 1303 pos1 = get_bits(gb, offset_nbits);
yading@10 1304 fcb.x[fcb.n] = n + 5 * pos1;
yading@10 1305 fcb.y[fcb.n++] = sign;
yading@10 1306 if (n < frame_desc->dbl_pulses) {
yading@10 1307 pos2 = get_bits(gb, offset_nbits);
yading@10 1308 fcb.x[fcb.n] = n + 5 * pos2;
yading@10 1309 fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign;
yading@10 1310 }
yading@10 1311 }
yading@10 1312 }
yading@10 1313 ff_set_fixed_vector(pulses, &fcb, 1.0, size);
yading@10 1314
yading@10 1315 /* Calculate gain for adaptive & fixed codebook signal.
yading@10 1316 * see ff_amr_set_fixed_gain(). */
yading@10 1317 idx = get_bits(gb, 7);
yading@10 1318 fcb_gain = expf(avpriv_scalarproduct_float_c(s->gain_pred_err,
yading@10 1319 gain_coeff, 6) -
yading@10 1320 5.2409161640 + wmavoice_gain_codebook_fcb[idx]);
yading@10 1321 acb_gain = wmavoice_gain_codebook_acb[idx];
yading@10 1322 pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx],
yading@10 1323 -2.9957322736 /* log(0.05) */,
yading@10 1324 1.6094379124 /* log(5.0) */);
yading@10 1325
yading@10 1326 gain_weight = 8 >> frame_desc->log_n_blocks;
yading@10 1327 memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err,
yading@10 1328 sizeof(*s->gain_pred_err) * (6 - gain_weight));
yading@10 1329 for (n = 0; n < gain_weight; n++)
yading@10 1330 s->gain_pred_err[n] = pred_err;
yading@10 1331
yading@10 1332 /* Calculation of adaptive codebook */
yading@10 1333 if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
yading@10 1334 int len;
yading@10 1335 for (n = 0; n < size; n += len) {
yading@10 1336 int next_idx_sh16;
yading@10 1337 int abs_idx = block_idx * size + n;
yading@10 1338 int pitch_sh16 = (s->last_pitch_val << 16) +
yading@10 1339 s->pitch_diff_sh16 * abs_idx;
yading@10 1340 int pitch = (pitch_sh16 + 0x6FFF) >> 16;
yading@10 1341 int idx_sh16 = ((pitch << 16) - pitch_sh16) * 8 + 0x58000;
yading@10 1342 idx = idx_sh16 >> 16;
yading@10 1343 if (s->pitch_diff_sh16) {
yading@10 1344 if (s->pitch_diff_sh16 > 0) {
yading@10 1345 next_idx_sh16 = (idx_sh16) &~ 0xFFFF;
yading@10 1346 } else
yading@10 1347 next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF;
yading@10 1348 len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8,
yading@10 1349 1, size - n);
yading@10 1350 } else
yading@10 1351 len = size;
yading@10 1352
yading@10 1353 ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch],
yading@10 1354 wmavoice_ipol1_coeffs, 17,
yading@10 1355 idx, 9, len);
yading@10 1356 }
yading@10 1357 } else /* ACB_TYPE_HAMMING */ {
yading@10 1358 int block_pitch = block_pitch_sh2 >> 2;
yading@10 1359 idx = block_pitch_sh2 & 3;
yading@10 1360 if (idx) {
yading@10 1361 ff_acelp_interpolatef(excitation, &excitation[-block_pitch],
yading@10 1362 wmavoice_ipol2_coeffs, 4,
yading@10 1363 idx, 8, size);
yading@10 1364 } else
yading@10 1365 av_memcpy_backptr((uint8_t *) excitation, sizeof(float) * block_pitch,
yading@10 1366 sizeof(float) * size);
yading@10 1367 }
yading@10 1368
yading@10 1369 /* Interpolate ACB/FCB and use as excitation signal */
yading@10 1370 ff_weighted_vector_sumf(excitation, excitation, pulses,
yading@10 1371 acb_gain, fcb_gain, size);
yading@10 1372 }
yading@10 1373
yading@10 1374 /**
yading@10 1375 * Parse data in a single block.
yading@10 1376 * @note we assume enough bits are available, caller should check.
yading@10 1377 *
yading@10 1378 * @param s WMA Voice decoding context private data
yading@10 1379 * @param gb bit I/O context
yading@10 1380 * @param block_idx index of the to-be-read block
yading@10 1381 * @param size amount of samples to be read in this block
yading@10 1382 * @param block_pitch_sh2 pitch for this block << 2
yading@10 1383 * @param lsps LSPs for (the end of) this frame
yading@10 1384 * @param prev_lsps LSPs for the last frame
yading@10 1385 * @param frame_desc frame type descriptor
yading@10 1386 * @param excitation target memory for the ACB+FCB interpolated signal
yading@10 1387 * @param synth target memory for the speech synthesis filter output
yading@10 1388 * @return 0 on success, <0 on error.
yading@10 1389 */
yading@10 1390 static void synth_block(WMAVoiceContext *s, GetBitContext *gb,
yading@10 1391 int block_idx, int size,
yading@10 1392 int block_pitch_sh2,
yading@10 1393 const double *lsps, const double *prev_lsps,
yading@10 1394 const struct frame_type_desc *frame_desc,
yading@10 1395 float *excitation, float *synth)
yading@10 1396 {
yading@10 1397 double i_lsps[MAX_LSPS];
yading@10 1398 float lpcs[MAX_LSPS];
yading@10 1399 float fac;
yading@10 1400 int n;
yading@10 1401
yading@10 1402 if (frame_desc->acb_type == ACB_TYPE_NONE)
yading@10 1403 synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation);
yading@10 1404 else
yading@10 1405 synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2,
yading@10 1406 frame_desc, excitation);
yading@10 1407
yading@10 1408 /* convert interpolated LSPs to LPCs */
yading@10 1409 fac = (block_idx + 0.5) / frame_desc->n_blocks;
yading@10 1410 for (n = 0; n < s->lsps; n++) // LSF -> LSP
yading@10 1411 i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n]));
yading@10 1412 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
yading@10 1413
yading@10 1414 /* Speech synthesis */
yading@10 1415 ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps);
yading@10 1416 }
yading@10 1417
yading@10 1418 /**
yading@10 1419 * Synthesize output samples for a single frame.
yading@10 1420 * @note we assume enough bits are available, caller should check.
yading@10 1421 *
yading@10 1422 * @param ctx WMA Voice decoder context
yading@10 1423 * @param gb bit I/O context (s->gb or one for cross-packet superframes)
yading@10 1424 * @param frame_idx Frame number within superframe [0-2]
yading@10 1425 * @param samples pointer to output sample buffer, has space for at least 160
yading@10 1426 * samples
yading@10 1427 * @param lsps LSP array
yading@10 1428 * @param prev_lsps array of previous frame's LSPs
yading@10 1429 * @param excitation target buffer for excitation signal
yading@10 1430 * @param synth target buffer for synthesized speech data
yading@10 1431 * @return 0 on success, <0 on error.
yading@10 1432 */
yading@10 1433 static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx,
yading@10 1434 float *samples,
yading@10 1435 const double *lsps, const double *prev_lsps,
yading@10 1436 float *excitation, float *synth)
yading@10 1437 {
yading@10 1438 WMAVoiceContext *s = ctx->priv_data;
yading@10 1439 int n, n_blocks_x2, log_n_blocks_x2, av_uninit(cur_pitch_val);
yading@10 1440 int pitch[MAX_BLOCKS], av_uninit(last_block_pitch);
yading@10 1441
yading@10 1442 /* Parse frame type ("frame header"), see frame_descs */
yading@10 1443 int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)], block_nsamples;
yading@10 1444
yading@10 1445 if (bd_idx < 0) {
yading@10 1446 av_log(ctx, AV_LOG_ERROR,
yading@10 1447 "Invalid frame type VLC code, skipping\n");
yading@10 1448 return -1;
yading@10 1449 }
yading@10 1450
yading@10 1451 block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks;
yading@10 1452
yading@10 1453 /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */
yading@10 1454 if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) {
yading@10 1455 /* Pitch is provided per frame, which is interpreted as the pitch of
yading@10 1456 * the last sample of the last block of this frame. We can interpolate
yading@10 1457 * the pitch of other blocks (and even pitch-per-sample) by gradually
yading@10 1458 * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */
yading@10 1459 n_blocks_x2 = frame_descs[bd_idx].n_blocks << 1;
yading@10 1460 log_n_blocks_x2 = frame_descs[bd_idx].log_n_blocks + 1;
yading@10 1461 cur_pitch_val = s->min_pitch_val + get_bits(gb, s->pitch_nbits);
yading@10 1462 cur_pitch_val = FFMIN(cur_pitch_val, s->max_pitch_val - 1);
yading@10 1463 if (s->last_acb_type == ACB_TYPE_NONE ||
yading@10 1464 20 * abs(cur_pitch_val - s->last_pitch_val) >
yading@10 1465 (cur_pitch_val + s->last_pitch_val))
yading@10 1466 s->last_pitch_val = cur_pitch_val;
yading@10 1467
yading@10 1468 /* pitch per block */
yading@10 1469 for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
yading@10 1470 int fac = n * 2 + 1;
yading@10 1471
yading@10 1472 pitch[n] = (MUL16(fac, cur_pitch_val) +
yading@10 1473 MUL16((n_blocks_x2 - fac), s->last_pitch_val) +
yading@10 1474 frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2;
yading@10 1475 }
yading@10 1476
yading@10 1477 /* "pitch-diff-per-sample" for calculation of pitch per sample */
yading@10 1478 s->pitch_diff_sh16 =
yading@10 1479 ((cur_pitch_val - s->last_pitch_val) << 16) / MAX_FRAMESIZE;
yading@10 1480 }
yading@10 1481
yading@10 1482 /* Global gain (if silence) and pitch-adaptive window coordinates */
yading@10 1483 switch (frame_descs[bd_idx].fcb_type) {
yading@10 1484 case FCB_TYPE_SILENCE:
yading@10 1485 s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)];
yading@10 1486 break;
yading@10 1487 case FCB_TYPE_AW_PULSES:
yading@10 1488 aw_parse_coords(s, gb, pitch);
yading@10 1489 break;
yading@10 1490 }
yading@10 1491
yading@10 1492 for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
yading@10 1493 int bl_pitch_sh2;
yading@10 1494
yading@10 1495 /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */
yading@10 1496 switch (frame_descs[bd_idx].acb_type) {
yading@10 1497 case ACB_TYPE_HAMMING: {
yading@10 1498 /* Pitch is given per block. Per-block pitches are encoded as an
yading@10 1499 * absolute value for the first block, and then delta values
yading@10 1500 * relative to this value) for all subsequent blocks. The scale of
yading@10 1501 * this pitch value is semi-logaritmic compared to its use in the
yading@10 1502 * decoder, so we convert it to normal scale also. */
yading@10 1503 int block_pitch,
yading@10 1504 t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2,
yading@10 1505 t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1,
yading@10 1506 t3 = s->block_conv_table[3] - s->block_conv_table[2] + 1;
yading@10 1507
yading@10 1508 if (n == 0) {
yading@10 1509 block_pitch = get_bits(gb, s->block_pitch_nbits);
yading@10 1510 } else
yading@10 1511 block_pitch = last_block_pitch - s->block_delta_pitch_hrange +
yading@10 1512 get_bits(gb, s->block_delta_pitch_nbits);
yading@10 1513 /* Convert last_ so that any next delta is within _range */
yading@10 1514 last_block_pitch = av_clip(block_pitch,
yading@10 1515 s->block_delta_pitch_hrange,
yading@10 1516 s->block_pitch_range -
yading@10 1517 s->block_delta_pitch_hrange);
yading@10 1518
yading@10 1519 /* Convert semi-log-style scale back to normal scale */
yading@10 1520 if (block_pitch < t1) {
yading@10 1521 bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch;
yading@10 1522 } else {
yading@10 1523 block_pitch -= t1;
yading@10 1524 if (block_pitch < t2) {
yading@10 1525 bl_pitch_sh2 =
yading@10 1526 (s->block_conv_table[1] << 2) + (block_pitch << 1);
yading@10 1527 } else {
yading@10 1528 block_pitch -= t2;
yading@10 1529 if (block_pitch < t3) {
yading@10 1530 bl_pitch_sh2 =
yading@10 1531 (s->block_conv_table[2] + block_pitch) << 2;
yading@10 1532 } else
yading@10 1533 bl_pitch_sh2 = s->block_conv_table[3] << 2;
yading@10 1534 }
yading@10 1535 }
yading@10 1536 pitch[n] = bl_pitch_sh2 >> 2;
yading@10 1537 break;
yading@10 1538 }
yading@10 1539
yading@10 1540 case ACB_TYPE_ASYMMETRIC: {
yading@10 1541 bl_pitch_sh2 = pitch[n] << 2;
yading@10 1542 break;
yading@10 1543 }
yading@10 1544
yading@10 1545 default: // ACB_TYPE_NONE has no pitch
yading@10 1546 bl_pitch_sh2 = 0;
yading@10 1547 break;
yading@10 1548 }
yading@10 1549
yading@10 1550 synth_block(s, gb, n, block_nsamples, bl_pitch_sh2,
yading@10 1551 lsps, prev_lsps, &frame_descs[bd_idx],
yading@10 1552 &excitation[n * block_nsamples],
yading@10 1553 &synth[n * block_nsamples]);
yading@10 1554 }
yading@10 1555
yading@10 1556 /* Averaging projection filter, if applicable. Else, just copy samples
yading@10 1557 * from synthesis buffer */
yading@10 1558 if (s->do_apf) {
yading@10 1559 double i_lsps[MAX_LSPS];
yading@10 1560 float lpcs[MAX_LSPS];
yading@10 1561
yading@10 1562 for (n = 0; n < s->lsps; n++) // LSF -> LSP
yading@10 1563 i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n]));
yading@10 1564 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
yading@10 1565 postfilter(s, synth, samples, 80, lpcs,
yading@10 1566 &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx],
yading@10 1567 frame_descs[bd_idx].fcb_type, pitch[0]);
yading@10 1568
yading@10 1569 for (n = 0; n < s->lsps; n++) // LSF -> LSP
yading@10 1570 i_lsps[n] = cos(lsps[n]);
yading@10 1571 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
yading@10 1572 postfilter(s, &synth[80], &samples[80], 80, lpcs,
yading@10 1573 &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80],
yading@10 1574 frame_descs[bd_idx].fcb_type, pitch[0]);
yading@10 1575 } else
yading@10 1576 memcpy(samples, synth, 160 * sizeof(synth[0]));
yading@10 1577
yading@10 1578 /* Cache values for next frame */
yading@10 1579 s->frame_cntr++;
yading@10 1580 if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%)
yading@10 1581 s->last_acb_type = frame_descs[bd_idx].acb_type;
yading@10 1582 switch (frame_descs[bd_idx].acb_type) {
yading@10 1583 case ACB_TYPE_NONE:
yading@10 1584 s->last_pitch_val = 0;
yading@10 1585 break;
yading@10 1586 case ACB_TYPE_ASYMMETRIC:
yading@10 1587 s->last_pitch_val = cur_pitch_val;
yading@10 1588 break;
yading@10 1589 case ACB_TYPE_HAMMING:
yading@10 1590 s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1];
yading@10 1591 break;
yading@10 1592 }
yading@10 1593
yading@10 1594 return 0;
yading@10 1595 }
yading@10 1596
yading@10 1597 /**
yading@10 1598 * Ensure minimum value for first item, maximum value for last value,
yading@10 1599 * proper spacing between each value and proper ordering.
yading@10 1600 *
yading@10 1601 * @param lsps array of LSPs
yading@10 1602 * @param num size of LSP array
yading@10 1603 *
yading@10 1604 * @note basically a double version of #ff_acelp_reorder_lsf(), might be
yading@10 1605 * useful to put in a generic location later on. Parts are also
yading@10 1606 * present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(),
yading@10 1607 * which is in float.
yading@10 1608 */
yading@10 1609 static void stabilize_lsps(double *lsps, int num)
yading@10 1610 {
yading@10 1611 int n, m, l;
yading@10 1612
yading@10 1613 /* set minimum value for first, maximum value for last and minimum
yading@10 1614 * spacing between LSF values.
yading@10 1615 * Very similar to ff_set_min_dist_lsf(), but in double. */
yading@10 1616 lsps[0] = FFMAX(lsps[0], 0.0015 * M_PI);
yading@10 1617 for (n = 1; n < num; n++)
yading@10 1618 lsps[n] = FFMAX(lsps[n], lsps[n - 1] + 0.0125 * M_PI);
yading@10 1619 lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI);
yading@10 1620
yading@10 1621 /* reorder (looks like one-time / non-recursed bubblesort).
yading@10 1622 * Very similar to ff_sort_nearly_sorted_floats(), but in double. */
yading@10 1623 for (n = 1; n < num; n++) {
yading@10 1624 if (lsps[n] < lsps[n - 1]) {
yading@10 1625 for (m = 1; m < num; m++) {
yading@10 1626 double tmp = lsps[m];
yading@10 1627 for (l = m - 1; l >= 0; l--) {
yading@10 1628 if (lsps[l] <= tmp) break;
yading@10 1629 lsps[l + 1] = lsps[l];
yading@10 1630 }
yading@10 1631 lsps[l + 1] = tmp;
yading@10 1632 }
yading@10 1633 break;
yading@10 1634 }
yading@10 1635 }
yading@10 1636 }
yading@10 1637
yading@10 1638 /**
yading@10 1639 * Test if there's enough bits to read 1 superframe.
yading@10 1640 *
yading@10 1641 * @param orig_gb bit I/O context used for reading. This function
yading@10 1642 * does not modify the state of the bitreader; it
yading@10 1643 * only uses it to copy the current stream position
yading@10 1644 * @param s WMA Voice decoding context private data
yading@10 1645 * @return -1 if unsupported, 1 on not enough bits or 0 if OK.
yading@10 1646 */
yading@10 1647 static int check_bits_for_superframe(GetBitContext *orig_gb,
yading@10 1648 WMAVoiceContext *s)
yading@10 1649 {
yading@10 1650 GetBitContext s_gb, *gb = &s_gb;
yading@10 1651 int n, need_bits, bd_idx;
yading@10 1652 const struct frame_type_desc *frame_desc;
yading@10 1653
yading@10 1654 /* initialize a copy */
yading@10 1655 init_get_bits(gb, orig_gb->buffer, orig_gb->size_in_bits);
yading@10 1656 skip_bits_long(gb, get_bits_count(orig_gb));
yading@10 1657 av_assert1(get_bits_left(gb) == get_bits_left(orig_gb));
yading@10 1658
yading@10 1659 /* superframe header */
yading@10 1660 if (get_bits_left(gb) < 14)
yading@10 1661 return 1;
yading@10 1662 if (!get_bits1(gb))
yading@10 1663 return -1; // WMAPro-in-WMAVoice superframe
yading@10 1664 if (get_bits1(gb)) skip_bits(gb, 12); // number of samples in superframe
yading@10 1665 if (s->has_residual_lsps) { // residual LSPs (for all frames)
yading@10 1666 if (get_bits_left(gb) < s->sframe_lsp_bitsize)
yading@10 1667 return 1;
yading@10 1668 skip_bits_long(gb, s->sframe_lsp_bitsize);
yading@10 1669 }
yading@10 1670
yading@10 1671 /* frames */
yading@10 1672 for (n = 0; n < MAX_FRAMES; n++) {
yading@10 1673 int aw_idx_is_ext = 0;
yading@10 1674
yading@10 1675 if (!s->has_residual_lsps) { // independent LSPs (per-frame)
yading@10 1676 if (get_bits_left(gb) < s->frame_lsp_bitsize) return 1;
yading@10 1677 skip_bits_long(gb, s->frame_lsp_bitsize);
yading@10 1678 }
yading@10 1679 bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)];
yading@10 1680 if (bd_idx < 0)
yading@10 1681 return -1; // invalid frame type VLC code
yading@10 1682 frame_desc = &frame_descs[bd_idx];
yading@10 1683 if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
yading@10 1684 if (get_bits_left(gb) < s->pitch_nbits)
yading@10 1685 return 1;
yading@10 1686 skip_bits_long(gb, s->pitch_nbits);
yading@10 1687 }
yading@10 1688 if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
yading@10 1689 skip_bits(gb, 8);
yading@10 1690 } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
yading@10 1691 int tmp = get_bits(gb, 6);
yading@10 1692 if (tmp >= 0x36) {
yading@10 1693 skip_bits(gb, 2);
yading@10 1694 aw_idx_is_ext = 1;
yading@10 1695 }
yading@10 1696 }
yading@10 1697
yading@10 1698 /* blocks */
yading@10 1699 if (frame_desc->acb_type == ACB_TYPE_HAMMING) {
yading@10 1700 need_bits = s->block_pitch_nbits +
yading@10 1701 (frame_desc->n_blocks - 1) * s->block_delta_pitch_nbits;
yading@10 1702 } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
yading@10 1703 need_bits = 2 * !aw_idx_is_ext;
yading@10 1704 } else
yading@10 1705 need_bits = 0;
yading@10 1706 need_bits += frame_desc->frame_size;
yading@10 1707 if (get_bits_left(gb) < need_bits)
yading@10 1708 return 1;
yading@10 1709 skip_bits_long(gb, need_bits);
yading@10 1710 }
yading@10 1711
yading@10 1712 return 0;
yading@10 1713 }
yading@10 1714
yading@10 1715 /**
yading@10 1716 * Synthesize output samples for a single superframe. If we have any data
yading@10 1717 * cached in s->sframe_cache, that will be used instead of whatever is loaded
yading@10 1718 * in s->gb.
yading@10 1719 *
yading@10 1720 * WMA Voice superframes contain 3 frames, each containing 160 audio samples,
yading@10 1721 * to give a total of 480 samples per frame. See #synth_frame() for frame
yading@10 1722 * parsing. In addition to 3 frames, superframes can also contain the LSPs
yading@10 1723 * (if these are globally specified for all frames (residually); they can
yading@10 1724 * also be specified individually per-frame. See the s->has_residual_lsps
yading@10 1725 * option), and can specify the number of samples encoded in this superframe
yading@10 1726 * (if less than 480), usually used to prevent blanks at track boundaries.
yading@10 1727 *
yading@10 1728 * @param ctx WMA Voice decoder context
yading@10 1729 * @return 0 on success, <0 on error or 1 if there was not enough data to
yading@10 1730 * fully parse the superframe
yading@10 1731 */
yading@10 1732 static int synth_superframe(AVCodecContext *ctx, AVFrame *frame,
yading@10 1733 int *got_frame_ptr)
yading@10 1734 {
yading@10 1735 WMAVoiceContext *s = ctx->priv_data;
yading@10 1736 GetBitContext *gb = &s->gb, s_gb;
yading@10 1737 int n, res, n_samples = 480;
yading@10 1738 double lsps[MAX_FRAMES][MAX_LSPS];
yading@10 1739 const double *mean_lsf = s->lsps == 16 ?
yading@10 1740 wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode];
yading@10 1741 float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12];
yading@10 1742 float synth[MAX_LSPS + MAX_SFRAMESIZE];
yading@10 1743 float *samples;
yading@10 1744
yading@10 1745 memcpy(synth, s->synth_history,
yading@10 1746 s->lsps * sizeof(*synth));
yading@10 1747 memcpy(excitation, s->excitation_history,
yading@10 1748 s->history_nsamples * sizeof(*excitation));
yading@10 1749
yading@10 1750 if (s->sframe_cache_size > 0) {
yading@10 1751 gb = &s_gb;
yading@10 1752 init_get_bits(gb, s->sframe_cache, s->sframe_cache_size);
yading@10 1753 s->sframe_cache_size = 0;
yading@10 1754 }
yading@10 1755
yading@10 1756 if ((res = check_bits_for_superframe(gb, s)) == 1) {
yading@10 1757 *got_frame_ptr = 0;
yading@10 1758 return 1;
yading@10 1759 }
yading@10 1760
yading@10 1761 /* First bit is speech/music bit, it differentiates between WMAVoice
yading@10 1762 * speech samples (the actual codec) and WMAVoice music samples, which
yading@10 1763 * are really WMAPro-in-WMAVoice-superframes. I've never seen those in
yading@10 1764 * the wild yet. */
yading@10 1765 if (!get_bits1(gb)) {
yading@10 1766 avpriv_request_sample(ctx, "WMAPro-in-WMAVoice");
yading@10 1767 return AVERROR_PATCHWELCOME;
yading@10 1768 }
yading@10 1769
yading@10 1770 /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */
yading@10 1771 if (get_bits1(gb)) {
yading@10 1772 if ((n_samples = get_bits(gb, 12)) > 480) {
yading@10 1773 av_log(ctx, AV_LOG_ERROR,
yading@10 1774 "Superframe encodes >480 samples (%d), not allowed\n",
yading@10 1775 n_samples);
yading@10 1776 return -1;
yading@10 1777 }
yading@10 1778 }
yading@10 1779 /* Parse LSPs, if global for the superframe (can also be per-frame). */
yading@10 1780 if (s->has_residual_lsps) {
yading@10 1781 double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2];
yading@10 1782
yading@10 1783 for (n = 0; n < s->lsps; n++)
yading@10 1784 prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n];
yading@10 1785
yading@10 1786 if (s->lsps == 10) {
yading@10 1787 dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
yading@10 1788 } else /* s->lsps == 16 */
yading@10 1789 dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
yading@10 1790
yading@10 1791 for (n = 0; n < s->lsps; n++) {
yading@10 1792 lsps[0][n] = mean_lsf[n] + (a1[n] - a2[n * 2]);
yading@10 1793 lsps[1][n] = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]);
yading@10 1794 lsps[2][n] += mean_lsf[n];
yading@10 1795 }
yading@10 1796 for (n = 0; n < 3; n++)
yading@10 1797 stabilize_lsps(lsps[n], s->lsps);
yading@10 1798 }
yading@10 1799
yading@10 1800 /* get output buffer */
yading@10 1801 frame->nb_samples = 480;
yading@10 1802 if ((res = ff_get_buffer(ctx, frame, 0)) < 0)
yading@10 1803 return res;
yading@10 1804 frame->nb_samples = n_samples;
yading@10 1805 samples = (float *)frame->data[0];
yading@10 1806
yading@10 1807 /* Parse frames, optionally preceded by per-frame (independent) LSPs. */
yading@10 1808 for (n = 0; n < 3; n++) {
yading@10 1809 if (!s->has_residual_lsps) {
yading@10 1810 int m;
yading@10 1811
yading@10 1812 if (s->lsps == 10) {
yading@10 1813 dequant_lsp10i(gb, lsps[n]);
yading@10 1814 } else /* s->lsps == 16 */
yading@10 1815 dequant_lsp16i(gb, lsps[n]);
yading@10 1816
yading@10 1817 for (m = 0; m < s->lsps; m++)
yading@10 1818 lsps[n][m] += mean_lsf[m];
yading@10 1819 stabilize_lsps(lsps[n], s->lsps);
yading@10 1820 }
yading@10 1821
yading@10 1822 if ((res = synth_frame(ctx, gb, n,
yading@10 1823 &samples[n * MAX_FRAMESIZE],
yading@10 1824 lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1],
yading@10 1825 &excitation[s->history_nsamples + n * MAX_FRAMESIZE],
yading@10 1826 &synth[s->lsps + n * MAX_FRAMESIZE]))) {
yading@10 1827 *got_frame_ptr = 0;
yading@10 1828 return res;
yading@10 1829 }
yading@10 1830 }
yading@10 1831
yading@10 1832 /* Statistics? FIXME - we don't check for length, a slight overrun
yading@10 1833 * will be caught by internal buffer padding, and anything else
yading@10 1834 * will be skipped, not read. */
yading@10 1835 if (get_bits1(gb)) {
yading@10 1836 res = get_bits(gb, 4);
yading@10 1837 skip_bits(gb, 10 * (res + 1));
yading@10 1838 }
yading@10 1839
yading@10 1840 *got_frame_ptr = 1;
yading@10 1841
yading@10 1842 /* Update history */
yading@10 1843 memcpy(s->prev_lsps, lsps[2],
yading@10 1844 s->lsps * sizeof(*s->prev_lsps));
yading@10 1845 memcpy(s->synth_history, &synth[MAX_SFRAMESIZE],
yading@10 1846 s->lsps * sizeof(*synth));
yading@10 1847 memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE],
yading@10 1848 s->history_nsamples * sizeof(*excitation));
yading@10 1849 if (s->do_apf)
yading@10 1850 memmove(s->zero_exc_pf, &s->zero_exc_pf[MAX_SFRAMESIZE],
yading@10 1851 s->history_nsamples * sizeof(*s->zero_exc_pf));
yading@10 1852
yading@10 1853 return 0;
yading@10 1854 }
yading@10 1855
yading@10 1856 /**
yading@10 1857 * Parse the packet header at the start of each packet (input data to this
yading@10 1858 * decoder).
yading@10 1859 *
yading@10 1860 * @param s WMA Voice decoding context private data
yading@10 1861 * @return 1 if not enough bits were available, or 0 on success.
yading@10 1862 */
yading@10 1863 static int parse_packet_header(WMAVoiceContext *s)
yading@10 1864 {
yading@10 1865 GetBitContext *gb = &s->gb;
yading@10 1866 unsigned int res;
yading@10 1867
yading@10 1868 if (get_bits_left(gb) < 11)
yading@10 1869 return 1;
yading@10 1870 skip_bits(gb, 4); // packet sequence number
yading@10 1871 s->has_residual_lsps = get_bits1(gb);
yading@10 1872 do {
yading@10 1873 res = get_bits(gb, 6); // number of superframes per packet
yading@10 1874 // (minus first one if there is spillover)
yading@10 1875 if (get_bits_left(gb) < 6 * (res == 0x3F) + s->spillover_bitsize)
yading@10 1876 return 1;
yading@10 1877 } while (res == 0x3F);
yading@10 1878 s->spillover_nbits = get_bits(gb, s->spillover_bitsize);
yading@10 1879
yading@10 1880 return 0;
yading@10 1881 }
yading@10 1882
yading@10 1883 /**
yading@10 1884 * Copy (unaligned) bits from gb/data/size to pb.
yading@10 1885 *
yading@10 1886 * @param pb target buffer to copy bits into
yading@10 1887 * @param data source buffer to copy bits from
yading@10 1888 * @param size size of the source data, in bytes
yading@10 1889 * @param gb bit I/O context specifying the current position in the source.
yading@10 1890 * data. This function might use this to align the bit position to
yading@10 1891 * a whole-byte boundary before calling #avpriv_copy_bits() on aligned
yading@10 1892 * source data
yading@10 1893 * @param nbits the amount of bits to copy from source to target
yading@10 1894 *
yading@10 1895 * @note after calling this function, the current position in the input bit
yading@10 1896 * I/O context is undefined.
yading@10 1897 */
yading@10 1898 static void copy_bits(PutBitContext *pb,
yading@10 1899 const uint8_t *data, int size,
yading@10 1900 GetBitContext *gb, int nbits)
yading@10 1901 {
yading@10 1902 int rmn_bytes, rmn_bits;
yading@10 1903
yading@10 1904 rmn_bits = rmn_bytes = get_bits_left(gb);
yading@10 1905 if (rmn_bits < nbits)
yading@10 1906 return;
yading@10 1907 if (nbits > pb->size_in_bits - put_bits_count(pb))
yading@10 1908 return;
yading@10 1909 rmn_bits &= 7; rmn_bytes >>= 3;
yading@10 1910 if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0)
yading@10 1911 put_bits(pb, rmn_bits, get_bits(gb, rmn_bits));
yading@10 1912 avpriv_copy_bits(pb, data + size - rmn_bytes,
yading@10 1913 FFMIN(nbits - rmn_bits, rmn_bytes << 3));
yading@10 1914 }
yading@10 1915
yading@10 1916 /**
yading@10 1917 * Packet decoding: a packet is anything that the (ASF) demuxer contains,
yading@10 1918 * and we expect that the demuxer / application provides it to us as such
yading@10 1919 * (else you'll probably get garbage as output). Every packet has a size of
yading@10 1920 * ctx->block_align bytes, starts with a packet header (see
yading@10 1921 * #parse_packet_header()), and then a series of superframes. Superframe
yading@10 1922 * boundaries may exceed packets, i.e. superframes can split data over
yading@10 1923 * multiple (two) packets.
yading@10 1924 *
yading@10 1925 * For more information about frames, see #synth_superframe().
yading@10 1926 */
yading@10 1927 static int wmavoice_decode_packet(AVCodecContext *ctx, void *data,
yading@10 1928 int *got_frame_ptr, AVPacket *avpkt)
yading@10 1929 {
yading@10 1930 WMAVoiceContext *s = ctx->priv_data;
yading@10 1931 GetBitContext *gb = &s->gb;
yading@10 1932 int size, res, pos;
yading@10 1933
yading@10 1934 /* Packets are sometimes a multiple of ctx->block_align, with a packet
yading@10 1935 * header at each ctx->block_align bytes. However, FFmpeg's ASF demuxer
yading@10 1936 * feeds us ASF packets, which may concatenate multiple "codec" packets
yading@10 1937 * in a single "muxer" packet, so we artificially emulate that by
yading@10 1938 * capping the packet size at ctx->block_align. */
yading@10 1939 for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align);
yading@10 1940 if (!size) {
yading@10 1941 *got_frame_ptr = 0;
yading@10 1942 return 0;
yading@10 1943 }
yading@10 1944 init_get_bits(&s->gb, avpkt->data, size << 3);
yading@10 1945
yading@10 1946 /* size == ctx->block_align is used to indicate whether we are dealing with
yading@10 1947 * a new packet or a packet of which we already read the packet header
yading@10 1948 * previously. */
yading@10 1949 if (size == ctx->block_align) { // new packet header
yading@10 1950 if ((res = parse_packet_header(s)) < 0)
yading@10 1951 return res;
yading@10 1952
yading@10 1953 /* If the packet header specifies a s->spillover_nbits, then we want
yading@10 1954 * to push out all data of the previous packet (+ spillover) before
yading@10 1955 * continuing to parse new superframes in the current packet. */
yading@10 1956 if (s->spillover_nbits > 0) {
yading@10 1957 if (s->sframe_cache_size > 0) {
yading@10 1958 int cnt = get_bits_count(gb);
yading@10 1959 copy_bits(&s->pb, avpkt->data, size, gb, s->spillover_nbits);
yading@10 1960 flush_put_bits(&s->pb);
yading@10 1961 s->sframe_cache_size += s->spillover_nbits;
yading@10 1962 if ((res = synth_superframe(ctx, data, got_frame_ptr)) == 0 &&
yading@10 1963 *got_frame_ptr) {
yading@10 1964 cnt += s->spillover_nbits;
yading@10 1965 s->skip_bits_next = cnt & 7;
yading@10 1966 return cnt >> 3;
yading@10 1967 } else
yading@10 1968 skip_bits_long (gb, s->spillover_nbits - cnt +
yading@10 1969 get_bits_count(gb)); // resync
yading@10 1970 } else
yading@10 1971 skip_bits_long(gb, s->spillover_nbits); // resync
yading@10 1972 }
yading@10 1973 } else if (s->skip_bits_next)
yading@10 1974 skip_bits(gb, s->skip_bits_next);
yading@10 1975
yading@10 1976 /* Try parsing superframes in current packet */
yading@10 1977 s->sframe_cache_size = 0;
yading@10 1978 s->skip_bits_next = 0;
yading@10 1979 pos = get_bits_left(gb);
yading@10 1980 if ((res = synth_superframe(ctx, data, got_frame_ptr)) < 0) {
yading@10 1981 return res;
yading@10 1982 } else if (*got_frame_ptr) {
yading@10 1983 int cnt = get_bits_count(gb);
yading@10 1984 s->skip_bits_next = cnt & 7;
yading@10 1985 return cnt >> 3;
yading@10 1986 } else if ((s->sframe_cache_size = pos) > 0) {
yading@10 1987 /* rewind bit reader to start of last (incomplete) superframe... */
yading@10 1988 init_get_bits(gb, avpkt->data, size << 3);
yading@10 1989 skip_bits_long(gb, (size << 3) - pos);
yading@10 1990 av_assert1(get_bits_left(gb) == pos);
yading@10 1991
yading@10 1992 /* ...and cache it for spillover in next packet */
yading@10 1993 init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE);
yading@10 1994 copy_bits(&s->pb, avpkt->data, size, gb, s->sframe_cache_size);
yading@10 1995 // FIXME bad - just copy bytes as whole and add use the
yading@10 1996 // skip_bits_next field
yading@10 1997 }
yading@10 1998
yading@10 1999 return size;
yading@10 2000 }
yading@10 2001
yading@10 2002 static av_cold int wmavoice_decode_end(AVCodecContext *ctx)
yading@10 2003 {
yading@10 2004 WMAVoiceContext *s = ctx->priv_data;
yading@10 2005
yading@10 2006 if (s->do_apf) {
yading@10 2007 ff_rdft_end(&s->rdft);
yading@10 2008 ff_rdft_end(&s->irdft);
yading@10 2009 ff_dct_end(&s->dct);
yading@10 2010 ff_dct_end(&s->dst);
yading@10 2011 }
yading@10 2012
yading@10 2013 return 0;
yading@10 2014 }
yading@10 2015
yading@10 2016 static av_cold void wmavoice_flush(AVCodecContext *ctx)
yading@10 2017 {
yading@10 2018 WMAVoiceContext *s = ctx->priv_data;
yading@10 2019 int n;
yading@10 2020
yading@10 2021 s->postfilter_agc = 0;
yading@10 2022 s->sframe_cache_size = 0;
yading@10 2023 s->skip_bits_next = 0;
yading@10 2024 for (n = 0; n < s->lsps; n++)
yading@10 2025 s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
yading@10 2026 memset(s->excitation_history, 0,
yading@10 2027 sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY);
yading@10 2028 memset(s->synth_history, 0,
yading@10 2029 sizeof(*s->synth_history) * MAX_LSPS);
yading@10 2030 memset(s->gain_pred_err, 0,
yading@10 2031 sizeof(s->gain_pred_err));
yading@10 2032
yading@10 2033 if (s->do_apf) {
yading@10 2034 memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0,
yading@10 2035 sizeof(*s->synth_filter_out_buf) * s->lsps);
yading@10 2036 memset(s->dcf_mem, 0,
yading@10 2037 sizeof(*s->dcf_mem) * 2);
yading@10 2038 memset(s->zero_exc_pf, 0,
yading@10 2039 sizeof(*s->zero_exc_pf) * s->history_nsamples);
yading@10 2040 memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache));
yading@10 2041 }
yading@10 2042 }
yading@10 2043
yading@10 2044 AVCodec ff_wmavoice_decoder = {
yading@10 2045 .name = "wmavoice",
yading@10 2046 .type = AVMEDIA_TYPE_AUDIO,
yading@10 2047 .id = AV_CODEC_ID_WMAVOICE,
yading@10 2048 .priv_data_size = sizeof(WMAVoiceContext),
yading@10 2049 .init = wmavoice_decode_init,
yading@10 2050 .close = wmavoice_decode_end,
yading@10 2051 .decode = wmavoice_decode_packet,
yading@10 2052 .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
yading@10 2053 .flush = wmavoice_flush,
yading@10 2054 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio Voice"),
yading@10 2055 };