yading@10
|
1 /*
|
yading@10
|
2 * (I)RDFT transforms
|
yading@10
|
3 * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
|
yading@10
|
4 *
|
yading@10
|
5 * This file is part of FFmpeg.
|
yading@10
|
6 *
|
yading@10
|
7 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
8 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
9 * License as published by the Free Software Foundation; either
|
yading@10
|
10 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
11 *
|
yading@10
|
12 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
yading@10
|
15 * Lesser General Public License for more details.
|
yading@10
|
16 *
|
yading@10
|
17 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
18 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
20 */
|
yading@10
|
21 #include <stdlib.h>
|
yading@10
|
22 #include <math.h>
|
yading@10
|
23 #include "libavutil/mathematics.h"
|
yading@10
|
24 #include "rdft.h"
|
yading@10
|
25
|
yading@10
|
26 /**
|
yading@10
|
27 * @file
|
yading@10
|
28 * (Inverse) Real Discrete Fourier Transforms.
|
yading@10
|
29 */
|
yading@10
|
30
|
yading@10
|
31 /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
|
yading@10
|
32 #if !CONFIG_HARDCODED_TABLES
|
yading@10
|
33 SINTABLE(16);
|
yading@10
|
34 SINTABLE(32);
|
yading@10
|
35 SINTABLE(64);
|
yading@10
|
36 SINTABLE(128);
|
yading@10
|
37 SINTABLE(256);
|
yading@10
|
38 SINTABLE(512);
|
yading@10
|
39 SINTABLE(1024);
|
yading@10
|
40 SINTABLE(2048);
|
yading@10
|
41 SINTABLE(4096);
|
yading@10
|
42 SINTABLE(8192);
|
yading@10
|
43 SINTABLE(16384);
|
yading@10
|
44 SINTABLE(32768);
|
yading@10
|
45 SINTABLE(65536);
|
yading@10
|
46 #endif
|
yading@10
|
47 static SINTABLE_CONST FFTSample * const ff_sin_tabs[] = {
|
yading@10
|
48 NULL, NULL, NULL, NULL,
|
yading@10
|
49 ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
|
yading@10
|
50 ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
|
yading@10
|
51 };
|
yading@10
|
52
|
yading@10
|
53 /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
|
yading@10
|
54 * the two real FFTs into one complex FFT. Unmangle the results.
|
yading@10
|
55 * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
|
yading@10
|
56 */
|
yading@10
|
57 static void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
|
yading@10
|
58 {
|
yading@10
|
59 int i, i1, i2;
|
yading@10
|
60 FFTComplex ev, od;
|
yading@10
|
61 const int n = 1 << s->nbits;
|
yading@10
|
62 const float k1 = 0.5;
|
yading@10
|
63 const float k2 = 0.5 - s->inverse;
|
yading@10
|
64 const FFTSample *tcos = s->tcos;
|
yading@10
|
65 const FFTSample *tsin = s->tsin;
|
yading@10
|
66
|
yading@10
|
67 if (!s->inverse) {
|
yading@10
|
68 s->fft.fft_permute(&s->fft, (FFTComplex*)data);
|
yading@10
|
69 s->fft.fft_calc(&s->fft, (FFTComplex*)data);
|
yading@10
|
70 }
|
yading@10
|
71 /* i=0 is a special case because of packing, the DC term is real, so we
|
yading@10
|
72 are going to throw the N/2 term (also real) in with it. */
|
yading@10
|
73 ev.re = data[0];
|
yading@10
|
74 data[0] = ev.re+data[1];
|
yading@10
|
75 data[1] = ev.re-data[1];
|
yading@10
|
76 for (i = 1; i < (n>>2); i++) {
|
yading@10
|
77 i1 = 2*i;
|
yading@10
|
78 i2 = n-i1;
|
yading@10
|
79 /* Separate even and odd FFTs */
|
yading@10
|
80 ev.re = k1*(data[i1 ]+data[i2 ]);
|
yading@10
|
81 od.im = -k2*(data[i1 ]-data[i2 ]);
|
yading@10
|
82 ev.im = k1*(data[i1+1]-data[i2+1]);
|
yading@10
|
83 od.re = k2*(data[i1+1]+data[i2+1]);
|
yading@10
|
84 /* Apply twiddle factors to the odd FFT and add to the even FFT */
|
yading@10
|
85 data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
|
yading@10
|
86 data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
|
yading@10
|
87 data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
|
yading@10
|
88 data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
|
yading@10
|
89 }
|
yading@10
|
90 data[2*i+1]=s->sign_convention*data[2*i+1];
|
yading@10
|
91 if (s->inverse) {
|
yading@10
|
92 data[0] *= k1;
|
yading@10
|
93 data[1] *= k1;
|
yading@10
|
94 s->fft.fft_permute(&s->fft, (FFTComplex*)data);
|
yading@10
|
95 s->fft.fft_calc(&s->fft, (FFTComplex*)data);
|
yading@10
|
96 }
|
yading@10
|
97 }
|
yading@10
|
98
|
yading@10
|
99 av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
|
yading@10
|
100 {
|
yading@10
|
101 int n = 1 << nbits;
|
yading@10
|
102 int i;
|
yading@10
|
103 const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1)*2*M_PI/n;
|
yading@10
|
104
|
yading@10
|
105 s->nbits = nbits;
|
yading@10
|
106 s->inverse = trans == IDFT_C2R || trans == DFT_C2R;
|
yading@10
|
107 s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
|
yading@10
|
108
|
yading@10
|
109 if (nbits < 4 || nbits > 16)
|
yading@10
|
110 return -1;
|
yading@10
|
111
|
yading@10
|
112 if (ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C) < 0)
|
yading@10
|
113 return -1;
|
yading@10
|
114
|
yading@10
|
115 ff_init_ff_cos_tabs(nbits);
|
yading@10
|
116 s->tcos = ff_cos_tabs[nbits];
|
yading@10
|
117 s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2);
|
yading@10
|
118 #if !CONFIG_HARDCODED_TABLES
|
yading@10
|
119 for (i = 0; i < (n>>2); i++) {
|
yading@10
|
120 s->tsin[i] = sin(i*theta);
|
yading@10
|
121 }
|
yading@10
|
122 #endif
|
yading@10
|
123 s->rdft_calc = ff_rdft_calc_c;
|
yading@10
|
124
|
yading@10
|
125 if (ARCH_ARM) ff_rdft_init_arm(s);
|
yading@10
|
126
|
yading@10
|
127 return 0;
|
yading@10
|
128 }
|
yading@10
|
129
|
yading@10
|
130 av_cold void ff_rdft_end(RDFTContext *s)
|
yading@10
|
131 {
|
yading@10
|
132 ff_fft_end(&s->fft);
|
yading@10
|
133 }
|