yading@10
|
1 /*
|
yading@10
|
2 * AMR wideband decoder
|
yading@10
|
3 * Copyright (c) 2010 Marcelo Galvao Povoa
|
yading@10
|
4 *
|
yading@10
|
5 * This file is part of FFmpeg.
|
yading@10
|
6 *
|
yading@10
|
7 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
8 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
9 * License as published by the Free Software Foundation; either
|
yading@10
|
10 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
11 *
|
yading@10
|
12 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
14 * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
|
yading@10
|
15 * Lesser General Public License for more details.
|
yading@10
|
16 *
|
yading@10
|
17 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
18 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
20 */
|
yading@10
|
21
|
yading@10
|
22 /**
|
yading@10
|
23 * @file
|
yading@10
|
24 * AMR wideband decoder
|
yading@10
|
25 */
|
yading@10
|
26
|
yading@10
|
27 #include "libavutil/channel_layout.h"
|
yading@10
|
28 #include "libavutil/common.h"
|
yading@10
|
29 #include "libavutil/float_dsp.h"
|
yading@10
|
30 #include "libavutil/lfg.h"
|
yading@10
|
31
|
yading@10
|
32 #include "avcodec.h"
|
yading@10
|
33 #include "lsp.h"
|
yading@10
|
34 #include "celp_filters.h"
|
yading@10
|
35 #include "celp_math.h"
|
yading@10
|
36 #include "acelp_filters.h"
|
yading@10
|
37 #include "acelp_vectors.h"
|
yading@10
|
38 #include "acelp_pitch_delay.h"
|
yading@10
|
39 #include "internal.h"
|
yading@10
|
40
|
yading@10
|
41 #define AMR_USE_16BIT_TABLES
|
yading@10
|
42 #include "amr.h"
|
yading@10
|
43
|
yading@10
|
44 #include "amrwbdata.h"
|
yading@10
|
45 #include "mips/amrwbdec_mips.h"
|
yading@10
|
46
|
yading@10
|
47 typedef struct {
|
yading@10
|
48 AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
|
yading@10
|
49 enum Mode fr_cur_mode; ///< mode index of current frame
|
yading@10
|
50 uint8_t fr_quality; ///< frame quality index (FQI)
|
yading@10
|
51 float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
|
yading@10
|
52 float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
|
yading@10
|
53 float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
|
yading@10
|
54 double isp[4][LP_ORDER]; ///< ISP vectors from current frame
|
yading@10
|
55 double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
|
yading@10
|
56
|
yading@10
|
57 float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
|
yading@10
|
58
|
yading@10
|
59 uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
|
yading@10
|
60 uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
|
yading@10
|
61
|
yading@10
|
62 float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
|
yading@10
|
63 float *excitation; ///< points to current excitation in excitation_buf[]
|
yading@10
|
64
|
yading@10
|
65 float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
|
yading@10
|
66 float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
|
yading@10
|
67
|
yading@10
|
68 float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
|
yading@10
|
69 float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
|
yading@10
|
70 float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
|
yading@10
|
71
|
yading@10
|
72 float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
|
yading@10
|
73
|
yading@10
|
74 float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
|
yading@10
|
75 uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
|
yading@10
|
76 float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
|
yading@10
|
77
|
yading@10
|
78 float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
|
yading@10
|
79 float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
|
yading@10
|
80 float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
|
yading@10
|
81
|
yading@10
|
82 float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
|
yading@10
|
83 float demph_mem[1]; ///< previous value in the de-emphasis filter
|
yading@10
|
84 float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
|
yading@10
|
85 float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
|
yading@10
|
86
|
yading@10
|
87 AVLFG prng; ///< random number generator for white noise excitation
|
yading@10
|
88 uint8_t first_frame; ///< flag active during decoding of the first frame
|
yading@10
|
89 ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
|
yading@10
|
90 ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
|
yading@10
|
91 CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
|
yading@10
|
92 CELPMContext celpm_ctx; ///< context for fixed point math operations
|
yading@10
|
93
|
yading@10
|
94 } AMRWBContext;
|
yading@10
|
95
|
yading@10
|
96 static av_cold int amrwb_decode_init(AVCodecContext *avctx)
|
yading@10
|
97 {
|
yading@10
|
98 AMRWBContext *ctx = avctx->priv_data;
|
yading@10
|
99 int i;
|
yading@10
|
100
|
yading@10
|
101 if (avctx->channels > 1) {
|
yading@10
|
102 avpriv_report_missing_feature(avctx, "multi-channel AMR");
|
yading@10
|
103 return AVERROR_PATCHWELCOME;
|
yading@10
|
104 }
|
yading@10
|
105
|
yading@10
|
106 avctx->channels = 1;
|
yading@10
|
107 avctx->channel_layout = AV_CH_LAYOUT_MONO;
|
yading@10
|
108 if (!avctx->sample_rate)
|
yading@10
|
109 avctx->sample_rate = 16000;
|
yading@10
|
110 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
|
yading@10
|
111
|
yading@10
|
112 av_lfg_init(&ctx->prng, 1);
|
yading@10
|
113
|
yading@10
|
114 ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
|
yading@10
|
115 ctx->first_frame = 1;
|
yading@10
|
116
|
yading@10
|
117 for (i = 0; i < LP_ORDER; i++)
|
yading@10
|
118 ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
|
yading@10
|
119
|
yading@10
|
120 for (i = 0; i < 4; i++)
|
yading@10
|
121 ctx->prediction_error[i] = MIN_ENERGY;
|
yading@10
|
122
|
yading@10
|
123 ff_acelp_filter_init(&ctx->acelpf_ctx);
|
yading@10
|
124 ff_acelp_vectors_init(&ctx->acelpv_ctx);
|
yading@10
|
125 ff_celp_filter_init(&ctx->celpf_ctx);
|
yading@10
|
126 ff_celp_math_init(&ctx->celpm_ctx);
|
yading@10
|
127
|
yading@10
|
128 return 0;
|
yading@10
|
129 }
|
yading@10
|
130
|
yading@10
|
131 /**
|
yading@10
|
132 * Decode the frame header in the "MIME/storage" format. This format
|
yading@10
|
133 * is simpler and does not carry the auxiliary frame information.
|
yading@10
|
134 *
|
yading@10
|
135 * @param[in] ctx The Context
|
yading@10
|
136 * @param[in] buf Pointer to the input buffer
|
yading@10
|
137 *
|
yading@10
|
138 * @return The decoded header length in bytes
|
yading@10
|
139 */
|
yading@10
|
140 static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
|
yading@10
|
141 {
|
yading@10
|
142 /* Decode frame header (1st octet) */
|
yading@10
|
143 ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
|
yading@10
|
144 ctx->fr_quality = (buf[0] & 0x4) == 0x4;
|
yading@10
|
145
|
yading@10
|
146 return 1;
|
yading@10
|
147 }
|
yading@10
|
148
|
yading@10
|
149 /**
|
yading@10
|
150 * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
|
yading@10
|
151 *
|
yading@10
|
152 * @param[in] ind Array of 5 indexes
|
yading@10
|
153 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
|
yading@10
|
154 *
|
yading@10
|
155 */
|
yading@10
|
156 static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
|
yading@10
|
157 {
|
yading@10
|
158 int i;
|
yading@10
|
159
|
yading@10
|
160 for (i = 0; i < 9; i++)
|
yading@10
|
161 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
|
yading@10
|
162
|
yading@10
|
163 for (i = 0; i < 7; i++)
|
yading@10
|
164 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
|
yading@10
|
165
|
yading@10
|
166 for (i = 0; i < 5; i++)
|
yading@10
|
167 isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
|
yading@10
|
168
|
yading@10
|
169 for (i = 0; i < 4; i++)
|
yading@10
|
170 isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
|
yading@10
|
171
|
yading@10
|
172 for (i = 0; i < 7; i++)
|
yading@10
|
173 isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
|
yading@10
|
174 }
|
yading@10
|
175
|
yading@10
|
176 /**
|
yading@10
|
177 * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
|
yading@10
|
178 *
|
yading@10
|
179 * @param[in] ind Array of 7 indexes
|
yading@10
|
180 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
|
yading@10
|
181 *
|
yading@10
|
182 */
|
yading@10
|
183 static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
|
yading@10
|
184 {
|
yading@10
|
185 int i;
|
yading@10
|
186
|
yading@10
|
187 for (i = 0; i < 9; i++)
|
yading@10
|
188 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
|
yading@10
|
189
|
yading@10
|
190 for (i = 0; i < 7; i++)
|
yading@10
|
191 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
|
yading@10
|
192
|
yading@10
|
193 for (i = 0; i < 3; i++)
|
yading@10
|
194 isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
|
yading@10
|
195
|
yading@10
|
196 for (i = 0; i < 3; i++)
|
yading@10
|
197 isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
|
yading@10
|
198
|
yading@10
|
199 for (i = 0; i < 3; i++)
|
yading@10
|
200 isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
|
yading@10
|
201
|
yading@10
|
202 for (i = 0; i < 3; i++)
|
yading@10
|
203 isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
|
yading@10
|
204
|
yading@10
|
205 for (i = 0; i < 4; i++)
|
yading@10
|
206 isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
|
yading@10
|
207 }
|
yading@10
|
208
|
yading@10
|
209 /**
|
yading@10
|
210 * Apply mean and past ISF values using the prediction factor.
|
yading@10
|
211 * Updates past ISF vector.
|
yading@10
|
212 *
|
yading@10
|
213 * @param[in,out] isf_q Current quantized ISF
|
yading@10
|
214 * @param[in,out] isf_past Past quantized ISF
|
yading@10
|
215 *
|
yading@10
|
216 */
|
yading@10
|
217 static void isf_add_mean_and_past(float *isf_q, float *isf_past)
|
yading@10
|
218 {
|
yading@10
|
219 int i;
|
yading@10
|
220 float tmp;
|
yading@10
|
221
|
yading@10
|
222 for (i = 0; i < LP_ORDER; i++) {
|
yading@10
|
223 tmp = isf_q[i];
|
yading@10
|
224 isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
|
yading@10
|
225 isf_q[i] += PRED_FACTOR * isf_past[i];
|
yading@10
|
226 isf_past[i] = tmp;
|
yading@10
|
227 }
|
yading@10
|
228 }
|
yading@10
|
229
|
yading@10
|
230 /**
|
yading@10
|
231 * Interpolate the fourth ISP vector from current and past frames
|
yading@10
|
232 * to obtain an ISP vector for each subframe.
|
yading@10
|
233 *
|
yading@10
|
234 * @param[in,out] isp_q ISPs for each subframe
|
yading@10
|
235 * @param[in] isp4_past Past ISP for subframe 4
|
yading@10
|
236 */
|
yading@10
|
237 static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
|
yading@10
|
238 {
|
yading@10
|
239 int i, k;
|
yading@10
|
240
|
yading@10
|
241 for (k = 0; k < 3; k++) {
|
yading@10
|
242 float c = isfp_inter[k];
|
yading@10
|
243 for (i = 0; i < LP_ORDER; i++)
|
yading@10
|
244 isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
|
yading@10
|
245 }
|
yading@10
|
246 }
|
yading@10
|
247
|
yading@10
|
248 /**
|
yading@10
|
249 * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
|
yading@10
|
250 * Calculate integer lag and fractional lag always using 1/4 resolution.
|
yading@10
|
251 * In 1st and 3rd subframes the index is relative to last subframe integer lag.
|
yading@10
|
252 *
|
yading@10
|
253 * @param[out] lag_int Decoded integer pitch lag
|
yading@10
|
254 * @param[out] lag_frac Decoded fractional pitch lag
|
yading@10
|
255 * @param[in] pitch_index Adaptive codebook pitch index
|
yading@10
|
256 * @param[in,out] base_lag_int Base integer lag used in relative subframes
|
yading@10
|
257 * @param[in] subframe Current subframe index (0 to 3)
|
yading@10
|
258 */
|
yading@10
|
259 static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
|
yading@10
|
260 uint8_t *base_lag_int, int subframe)
|
yading@10
|
261 {
|
yading@10
|
262 if (subframe == 0 || subframe == 2) {
|
yading@10
|
263 if (pitch_index < 376) {
|
yading@10
|
264 *lag_int = (pitch_index + 137) >> 2;
|
yading@10
|
265 *lag_frac = pitch_index - (*lag_int << 2) + 136;
|
yading@10
|
266 } else if (pitch_index < 440) {
|
yading@10
|
267 *lag_int = (pitch_index + 257 - 376) >> 1;
|
yading@10
|
268 *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
|
yading@10
|
269 /* the actual resolution is 1/2 but expressed as 1/4 */
|
yading@10
|
270 } else {
|
yading@10
|
271 *lag_int = pitch_index - 280;
|
yading@10
|
272 *lag_frac = 0;
|
yading@10
|
273 }
|
yading@10
|
274 /* minimum lag for next subframe */
|
yading@10
|
275 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
|
yading@10
|
276 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
|
yading@10
|
277 // XXX: the spec states clearly that *base_lag_int should be
|
yading@10
|
278 // the nearest integer to *lag_int (minus 8), but the ref code
|
yading@10
|
279 // actually always uses its floor, I'm following the latter
|
yading@10
|
280 } else {
|
yading@10
|
281 *lag_int = (pitch_index + 1) >> 2;
|
yading@10
|
282 *lag_frac = pitch_index - (*lag_int << 2);
|
yading@10
|
283 *lag_int += *base_lag_int;
|
yading@10
|
284 }
|
yading@10
|
285 }
|
yading@10
|
286
|
yading@10
|
287 /**
|
yading@10
|
288 * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
|
yading@10
|
289 * The description is analogous to decode_pitch_lag_high, but in 6k60 the
|
yading@10
|
290 * relative index is used for all subframes except the first.
|
yading@10
|
291 */
|
yading@10
|
292 static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
|
yading@10
|
293 uint8_t *base_lag_int, int subframe, enum Mode mode)
|
yading@10
|
294 {
|
yading@10
|
295 if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
|
yading@10
|
296 if (pitch_index < 116) {
|
yading@10
|
297 *lag_int = (pitch_index + 69) >> 1;
|
yading@10
|
298 *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
|
yading@10
|
299 } else {
|
yading@10
|
300 *lag_int = pitch_index - 24;
|
yading@10
|
301 *lag_frac = 0;
|
yading@10
|
302 }
|
yading@10
|
303 // XXX: same problem as before
|
yading@10
|
304 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
|
yading@10
|
305 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
|
yading@10
|
306 } else {
|
yading@10
|
307 *lag_int = (pitch_index + 1) >> 1;
|
yading@10
|
308 *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
|
yading@10
|
309 *lag_int += *base_lag_int;
|
yading@10
|
310 }
|
yading@10
|
311 }
|
yading@10
|
312
|
yading@10
|
313 /**
|
yading@10
|
314 * Find the pitch vector by interpolating the past excitation at the
|
yading@10
|
315 * pitch delay, which is obtained in this function.
|
yading@10
|
316 *
|
yading@10
|
317 * @param[in,out] ctx The context
|
yading@10
|
318 * @param[in] amr_subframe Current subframe data
|
yading@10
|
319 * @param[in] subframe Current subframe index (0 to 3)
|
yading@10
|
320 */
|
yading@10
|
321 static void decode_pitch_vector(AMRWBContext *ctx,
|
yading@10
|
322 const AMRWBSubFrame *amr_subframe,
|
yading@10
|
323 const int subframe)
|
yading@10
|
324 {
|
yading@10
|
325 int pitch_lag_int, pitch_lag_frac;
|
yading@10
|
326 int i;
|
yading@10
|
327 float *exc = ctx->excitation;
|
yading@10
|
328 enum Mode mode = ctx->fr_cur_mode;
|
yading@10
|
329
|
yading@10
|
330 if (mode <= MODE_8k85) {
|
yading@10
|
331 decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
|
yading@10
|
332 &ctx->base_pitch_lag, subframe, mode);
|
yading@10
|
333 } else
|
yading@10
|
334 decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
|
yading@10
|
335 &ctx->base_pitch_lag, subframe);
|
yading@10
|
336
|
yading@10
|
337 ctx->pitch_lag_int = pitch_lag_int;
|
yading@10
|
338 pitch_lag_int += pitch_lag_frac > 0;
|
yading@10
|
339
|
yading@10
|
340 /* Calculate the pitch vector by interpolating the past excitation at the
|
yading@10
|
341 pitch lag using a hamming windowed sinc function */
|
yading@10
|
342 ctx->acelpf_ctx.acelp_interpolatef(exc,
|
yading@10
|
343 exc + 1 - pitch_lag_int,
|
yading@10
|
344 ac_inter, 4,
|
yading@10
|
345 pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
|
yading@10
|
346 LP_ORDER, AMRWB_SFR_SIZE + 1);
|
yading@10
|
347
|
yading@10
|
348 /* Check which pitch signal path should be used
|
yading@10
|
349 * 6k60 and 8k85 modes have the ltp flag set to 0 */
|
yading@10
|
350 if (amr_subframe->ltp) {
|
yading@10
|
351 memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
|
yading@10
|
352 } else {
|
yading@10
|
353 for (i = 0; i < AMRWB_SFR_SIZE; i++)
|
yading@10
|
354 ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
|
yading@10
|
355 0.18 * exc[i + 1];
|
yading@10
|
356 memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
|
yading@10
|
357 }
|
yading@10
|
358 }
|
yading@10
|
359
|
yading@10
|
360 /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
|
yading@10
|
361 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
|
yading@10
|
362
|
yading@10
|
363 /** Get the bit at specified position */
|
yading@10
|
364 #define BIT_POS(x, p) (((x) >> (p)) & 1)
|
yading@10
|
365
|
yading@10
|
366 /**
|
yading@10
|
367 * The next six functions decode_[i]p_track decode exactly i pulses
|
yading@10
|
368 * positions and amplitudes (-1 or 1) in a subframe track using
|
yading@10
|
369 * an encoded pulse indexing (TS 26.190 section 5.8.2).
|
yading@10
|
370 *
|
yading@10
|
371 * The results are given in out[], in which a negative number means
|
yading@10
|
372 * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
|
yading@10
|
373 *
|
yading@10
|
374 * @param[out] out Output buffer (writes i elements)
|
yading@10
|
375 * @param[in] code Pulse index (no. of bits varies, see below)
|
yading@10
|
376 * @param[in] m (log2) Number of potential positions
|
yading@10
|
377 * @param[in] off Offset for decoded positions
|
yading@10
|
378 */
|
yading@10
|
379 static inline void decode_1p_track(int *out, int code, int m, int off)
|
yading@10
|
380 {
|
yading@10
|
381 int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
|
yading@10
|
382
|
yading@10
|
383 out[0] = BIT_POS(code, m) ? -pos : pos;
|
yading@10
|
384 }
|
yading@10
|
385
|
yading@10
|
386 static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
|
yading@10
|
387 {
|
yading@10
|
388 int pos0 = BIT_STR(code, m, m) + off;
|
yading@10
|
389 int pos1 = BIT_STR(code, 0, m) + off;
|
yading@10
|
390
|
yading@10
|
391 out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
|
yading@10
|
392 out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
|
yading@10
|
393 out[1] = pos0 > pos1 ? -out[1] : out[1];
|
yading@10
|
394 }
|
yading@10
|
395
|
yading@10
|
396 static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
|
yading@10
|
397 {
|
yading@10
|
398 int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
|
yading@10
|
399
|
yading@10
|
400 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
|
yading@10
|
401 m - 1, off + half_2p);
|
yading@10
|
402 decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
|
yading@10
|
403 }
|
yading@10
|
404
|
yading@10
|
405 static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
|
yading@10
|
406 {
|
yading@10
|
407 int half_4p, subhalf_2p;
|
yading@10
|
408 int b_offset = 1 << (m - 1);
|
yading@10
|
409
|
yading@10
|
410 switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
|
yading@10
|
411 case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
|
yading@10
|
412 half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
|
yading@10
|
413 subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
|
yading@10
|
414
|
yading@10
|
415 decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
|
yading@10
|
416 m - 2, off + half_4p + subhalf_2p);
|
yading@10
|
417 decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
|
yading@10
|
418 m - 1, off + half_4p);
|
yading@10
|
419 break;
|
yading@10
|
420 case 1: /* 1 pulse in A, 3 pulses in B */
|
yading@10
|
421 decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
|
yading@10
|
422 m - 1, off);
|
yading@10
|
423 decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
|
yading@10
|
424 m - 1, off + b_offset);
|
yading@10
|
425 break;
|
yading@10
|
426 case 2: /* 2 pulses in each half */
|
yading@10
|
427 decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
|
yading@10
|
428 m - 1, off);
|
yading@10
|
429 decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
|
yading@10
|
430 m - 1, off + b_offset);
|
yading@10
|
431 break;
|
yading@10
|
432 case 3: /* 3 pulses in A, 1 pulse in B */
|
yading@10
|
433 decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
|
yading@10
|
434 m - 1, off);
|
yading@10
|
435 decode_1p_track(out + 3, BIT_STR(code, 0, m),
|
yading@10
|
436 m - 1, off + b_offset);
|
yading@10
|
437 break;
|
yading@10
|
438 }
|
yading@10
|
439 }
|
yading@10
|
440
|
yading@10
|
441 static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
|
yading@10
|
442 {
|
yading@10
|
443 int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
|
yading@10
|
444
|
yading@10
|
445 decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
|
yading@10
|
446 m - 1, off + half_3p);
|
yading@10
|
447
|
yading@10
|
448 decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
|
yading@10
|
449 }
|
yading@10
|
450
|
yading@10
|
451 static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
|
yading@10
|
452 {
|
yading@10
|
453 int b_offset = 1 << (m - 1);
|
yading@10
|
454 /* which half has more pulses in cases 0 to 2 */
|
yading@10
|
455 int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
|
yading@10
|
456 int half_other = b_offset - half_more;
|
yading@10
|
457
|
yading@10
|
458 switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
|
yading@10
|
459 case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
|
yading@10
|
460 decode_1p_track(out, BIT_STR(code, 0, m),
|
yading@10
|
461 m - 1, off + half_more);
|
yading@10
|
462 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
|
yading@10
|
463 m - 1, off + half_more);
|
yading@10
|
464 break;
|
yading@10
|
465 case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
|
yading@10
|
466 decode_1p_track(out, BIT_STR(code, 0, m),
|
yading@10
|
467 m - 1, off + half_other);
|
yading@10
|
468 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
|
yading@10
|
469 m - 1, off + half_more);
|
yading@10
|
470 break;
|
yading@10
|
471 case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
|
yading@10
|
472 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
|
yading@10
|
473 m - 1, off + half_other);
|
yading@10
|
474 decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
|
yading@10
|
475 m - 1, off + half_more);
|
yading@10
|
476 break;
|
yading@10
|
477 case 3: /* 3 pulses in A, 3 pulses in B */
|
yading@10
|
478 decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
|
yading@10
|
479 m - 1, off);
|
yading@10
|
480 decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
|
yading@10
|
481 m - 1, off + b_offset);
|
yading@10
|
482 break;
|
yading@10
|
483 }
|
yading@10
|
484 }
|
yading@10
|
485
|
yading@10
|
486 /**
|
yading@10
|
487 * Decode the algebraic codebook index to pulse positions and signs,
|
yading@10
|
488 * then construct the algebraic codebook vector.
|
yading@10
|
489 *
|
yading@10
|
490 * @param[out] fixed_vector Buffer for the fixed codebook excitation
|
yading@10
|
491 * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
|
yading@10
|
492 * @param[in] pulse_lo LSBs part of the pulse index array
|
yading@10
|
493 * @param[in] mode Mode of the current frame
|
yading@10
|
494 */
|
yading@10
|
495 static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
|
yading@10
|
496 const uint16_t *pulse_lo, const enum Mode mode)
|
yading@10
|
497 {
|
yading@10
|
498 /* sig_pos stores for each track the decoded pulse position indexes
|
yading@10
|
499 * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
|
yading@10
|
500 int sig_pos[4][6];
|
yading@10
|
501 int spacing = (mode == MODE_6k60) ? 2 : 4;
|
yading@10
|
502 int i, j;
|
yading@10
|
503
|
yading@10
|
504 switch (mode) {
|
yading@10
|
505 case MODE_6k60:
|
yading@10
|
506 for (i = 0; i < 2; i++)
|
yading@10
|
507 decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
|
yading@10
|
508 break;
|
yading@10
|
509 case MODE_8k85:
|
yading@10
|
510 for (i = 0; i < 4; i++)
|
yading@10
|
511 decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
|
yading@10
|
512 break;
|
yading@10
|
513 case MODE_12k65:
|
yading@10
|
514 for (i = 0; i < 4; i++)
|
yading@10
|
515 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
|
yading@10
|
516 break;
|
yading@10
|
517 case MODE_14k25:
|
yading@10
|
518 for (i = 0; i < 2; i++)
|
yading@10
|
519 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
|
yading@10
|
520 for (i = 2; i < 4; i++)
|
yading@10
|
521 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
|
yading@10
|
522 break;
|
yading@10
|
523 case MODE_15k85:
|
yading@10
|
524 for (i = 0; i < 4; i++)
|
yading@10
|
525 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
|
yading@10
|
526 break;
|
yading@10
|
527 case MODE_18k25:
|
yading@10
|
528 for (i = 0; i < 4; i++)
|
yading@10
|
529 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
|
yading@10
|
530 ((int) pulse_hi[i] << 14), 4, 1);
|
yading@10
|
531 break;
|
yading@10
|
532 case MODE_19k85:
|
yading@10
|
533 for (i = 0; i < 2; i++)
|
yading@10
|
534 decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
|
yading@10
|
535 ((int) pulse_hi[i] << 10), 4, 1);
|
yading@10
|
536 for (i = 2; i < 4; i++)
|
yading@10
|
537 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
|
yading@10
|
538 ((int) pulse_hi[i] << 14), 4, 1);
|
yading@10
|
539 break;
|
yading@10
|
540 case MODE_23k05:
|
yading@10
|
541 case MODE_23k85:
|
yading@10
|
542 for (i = 0; i < 4; i++)
|
yading@10
|
543 decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
|
yading@10
|
544 ((int) pulse_hi[i] << 11), 4, 1);
|
yading@10
|
545 break;
|
yading@10
|
546 }
|
yading@10
|
547
|
yading@10
|
548 memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
|
yading@10
|
549
|
yading@10
|
550 for (i = 0; i < 4; i++)
|
yading@10
|
551 for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
|
yading@10
|
552 int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
|
yading@10
|
553
|
yading@10
|
554 fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
|
yading@10
|
555 }
|
yading@10
|
556 }
|
yading@10
|
557
|
yading@10
|
558 /**
|
yading@10
|
559 * Decode pitch gain and fixed gain correction factor.
|
yading@10
|
560 *
|
yading@10
|
561 * @param[in] vq_gain Vector-quantized index for gains
|
yading@10
|
562 * @param[in] mode Mode of the current frame
|
yading@10
|
563 * @param[out] fixed_gain_factor Decoded fixed gain correction factor
|
yading@10
|
564 * @param[out] pitch_gain Decoded pitch gain
|
yading@10
|
565 */
|
yading@10
|
566 static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
|
yading@10
|
567 float *fixed_gain_factor, float *pitch_gain)
|
yading@10
|
568 {
|
yading@10
|
569 const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
|
yading@10
|
570 qua_gain_7b[vq_gain]);
|
yading@10
|
571
|
yading@10
|
572 *pitch_gain = gains[0] * (1.0f / (1 << 14));
|
yading@10
|
573 *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
|
yading@10
|
574 }
|
yading@10
|
575
|
yading@10
|
576 /**
|
yading@10
|
577 * Apply pitch sharpening filters to the fixed codebook vector.
|
yading@10
|
578 *
|
yading@10
|
579 * @param[in] ctx The context
|
yading@10
|
580 * @param[in,out] fixed_vector Fixed codebook excitation
|
yading@10
|
581 */
|
yading@10
|
582 // XXX: Spec states this procedure should be applied when the pitch
|
yading@10
|
583 // lag is less than 64, but this checking seems absent in reference and AMR-NB
|
yading@10
|
584 static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
|
yading@10
|
585 {
|
yading@10
|
586 int i;
|
yading@10
|
587
|
yading@10
|
588 /* Tilt part */
|
yading@10
|
589 for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
|
yading@10
|
590 fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
|
yading@10
|
591
|
yading@10
|
592 /* Periodicity enhancement part */
|
yading@10
|
593 for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
|
yading@10
|
594 fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
|
yading@10
|
595 }
|
yading@10
|
596
|
yading@10
|
597 /**
|
yading@10
|
598 * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
|
yading@10
|
599 *
|
yading@10
|
600 * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
|
yading@10
|
601 * @param[in] p_gain, f_gain Pitch and fixed gains
|
yading@10
|
602 * @param[in] ctx The context
|
yading@10
|
603 */
|
yading@10
|
604 // XXX: There is something wrong with the precision here! The magnitudes
|
yading@10
|
605 // of the energies are not correct. Please check the reference code carefully
|
yading@10
|
606 static float voice_factor(float *p_vector, float p_gain,
|
yading@10
|
607 float *f_vector, float f_gain,
|
yading@10
|
608 CELPMContext *ctx)
|
yading@10
|
609 {
|
yading@10
|
610 double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
|
yading@10
|
611 AMRWB_SFR_SIZE) *
|
yading@10
|
612 p_gain * p_gain;
|
yading@10
|
613 double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
|
yading@10
|
614 AMRWB_SFR_SIZE) *
|
yading@10
|
615 f_gain * f_gain;
|
yading@10
|
616
|
yading@10
|
617 return (p_ener - f_ener) / (p_ener + f_ener);
|
yading@10
|
618 }
|
yading@10
|
619
|
yading@10
|
620 /**
|
yading@10
|
621 * Reduce fixed vector sparseness by smoothing with one of three IR filters,
|
yading@10
|
622 * also known as "adaptive phase dispersion".
|
yading@10
|
623 *
|
yading@10
|
624 * @param[in] ctx The context
|
yading@10
|
625 * @param[in,out] fixed_vector Unfiltered fixed vector
|
yading@10
|
626 * @param[out] buf Space for modified vector if necessary
|
yading@10
|
627 *
|
yading@10
|
628 * @return The potentially overwritten filtered fixed vector address
|
yading@10
|
629 */
|
yading@10
|
630 static float *anti_sparseness(AMRWBContext *ctx,
|
yading@10
|
631 float *fixed_vector, float *buf)
|
yading@10
|
632 {
|
yading@10
|
633 int ir_filter_nr;
|
yading@10
|
634
|
yading@10
|
635 if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
|
yading@10
|
636 return fixed_vector;
|
yading@10
|
637
|
yading@10
|
638 if (ctx->pitch_gain[0] < 0.6) {
|
yading@10
|
639 ir_filter_nr = 0; // strong filtering
|
yading@10
|
640 } else if (ctx->pitch_gain[0] < 0.9) {
|
yading@10
|
641 ir_filter_nr = 1; // medium filtering
|
yading@10
|
642 } else
|
yading@10
|
643 ir_filter_nr = 2; // no filtering
|
yading@10
|
644
|
yading@10
|
645 /* detect 'onset' */
|
yading@10
|
646 if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
|
yading@10
|
647 if (ir_filter_nr < 2)
|
yading@10
|
648 ir_filter_nr++;
|
yading@10
|
649 } else {
|
yading@10
|
650 int i, count = 0;
|
yading@10
|
651
|
yading@10
|
652 for (i = 0; i < 6; i++)
|
yading@10
|
653 if (ctx->pitch_gain[i] < 0.6)
|
yading@10
|
654 count++;
|
yading@10
|
655
|
yading@10
|
656 if (count > 2)
|
yading@10
|
657 ir_filter_nr = 0;
|
yading@10
|
658
|
yading@10
|
659 if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
|
yading@10
|
660 ir_filter_nr--;
|
yading@10
|
661 }
|
yading@10
|
662
|
yading@10
|
663 /* update ir filter strength history */
|
yading@10
|
664 ctx->prev_ir_filter_nr = ir_filter_nr;
|
yading@10
|
665
|
yading@10
|
666 ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
|
yading@10
|
667
|
yading@10
|
668 if (ir_filter_nr < 2) {
|
yading@10
|
669 int i;
|
yading@10
|
670 const float *coef = ir_filters_lookup[ir_filter_nr];
|
yading@10
|
671
|
yading@10
|
672 /* Circular convolution code in the reference
|
yading@10
|
673 * decoder was modified to avoid using one
|
yading@10
|
674 * extra array. The filtered vector is given by:
|
yading@10
|
675 *
|
yading@10
|
676 * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
|
yading@10
|
677 */
|
yading@10
|
678
|
yading@10
|
679 memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
|
yading@10
|
680 for (i = 0; i < AMRWB_SFR_SIZE; i++)
|
yading@10
|
681 if (fixed_vector[i])
|
yading@10
|
682 ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
|
yading@10
|
683 AMRWB_SFR_SIZE);
|
yading@10
|
684 fixed_vector = buf;
|
yading@10
|
685 }
|
yading@10
|
686
|
yading@10
|
687 return fixed_vector;
|
yading@10
|
688 }
|
yading@10
|
689
|
yading@10
|
690 /**
|
yading@10
|
691 * Calculate a stability factor {teta} based on distance between
|
yading@10
|
692 * current and past isf. A value of 1 shows maximum signal stability.
|
yading@10
|
693 */
|
yading@10
|
694 static float stability_factor(const float *isf, const float *isf_past)
|
yading@10
|
695 {
|
yading@10
|
696 int i;
|
yading@10
|
697 float acc = 0.0;
|
yading@10
|
698
|
yading@10
|
699 for (i = 0; i < LP_ORDER - 1; i++)
|
yading@10
|
700 acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
|
yading@10
|
701
|
yading@10
|
702 // XXX: This part is not so clear from the reference code
|
yading@10
|
703 // the result is more accurate changing the "/ 256" to "* 512"
|
yading@10
|
704 return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
|
yading@10
|
705 }
|
yading@10
|
706
|
yading@10
|
707 /**
|
yading@10
|
708 * Apply a non-linear fixed gain smoothing in order to reduce
|
yading@10
|
709 * fluctuation in the energy of excitation.
|
yading@10
|
710 *
|
yading@10
|
711 * @param[in] fixed_gain Unsmoothed fixed gain
|
yading@10
|
712 * @param[in,out] prev_tr_gain Previous threshold gain (updated)
|
yading@10
|
713 * @param[in] voice_fac Frame voicing factor
|
yading@10
|
714 * @param[in] stab_fac Frame stability factor
|
yading@10
|
715 *
|
yading@10
|
716 * @return The smoothed gain
|
yading@10
|
717 */
|
yading@10
|
718 static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
|
yading@10
|
719 float voice_fac, float stab_fac)
|
yading@10
|
720 {
|
yading@10
|
721 float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
|
yading@10
|
722 float g0;
|
yading@10
|
723
|
yading@10
|
724 // XXX: the following fixed-point constants used to in(de)crement
|
yading@10
|
725 // gain by 1.5dB were taken from the reference code, maybe it could
|
yading@10
|
726 // be simpler
|
yading@10
|
727 if (fixed_gain < *prev_tr_gain) {
|
yading@10
|
728 g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
|
yading@10
|
729 (6226 * (1.0f / (1 << 15)))); // +1.5 dB
|
yading@10
|
730 } else
|
yading@10
|
731 g0 = FFMAX(*prev_tr_gain, fixed_gain *
|
yading@10
|
732 (27536 * (1.0f / (1 << 15)))); // -1.5 dB
|
yading@10
|
733
|
yading@10
|
734 *prev_tr_gain = g0; // update next frame threshold
|
yading@10
|
735
|
yading@10
|
736 return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
|
yading@10
|
737 }
|
yading@10
|
738
|
yading@10
|
739 /**
|
yading@10
|
740 * Filter the fixed_vector to emphasize the higher frequencies.
|
yading@10
|
741 *
|
yading@10
|
742 * @param[in,out] fixed_vector Fixed codebook vector
|
yading@10
|
743 * @param[in] voice_fac Frame voicing factor
|
yading@10
|
744 */
|
yading@10
|
745 static void pitch_enhancer(float *fixed_vector, float voice_fac)
|
yading@10
|
746 {
|
yading@10
|
747 int i;
|
yading@10
|
748 float cpe = 0.125 * (1 + voice_fac);
|
yading@10
|
749 float last = fixed_vector[0]; // holds c(i - 1)
|
yading@10
|
750
|
yading@10
|
751 fixed_vector[0] -= cpe * fixed_vector[1];
|
yading@10
|
752
|
yading@10
|
753 for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
|
yading@10
|
754 float cur = fixed_vector[i];
|
yading@10
|
755
|
yading@10
|
756 fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
|
yading@10
|
757 last = cur;
|
yading@10
|
758 }
|
yading@10
|
759
|
yading@10
|
760 fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
|
yading@10
|
761 }
|
yading@10
|
762
|
yading@10
|
763 /**
|
yading@10
|
764 * Conduct 16th order linear predictive coding synthesis from excitation.
|
yading@10
|
765 *
|
yading@10
|
766 * @param[in] ctx Pointer to the AMRWBContext
|
yading@10
|
767 * @param[in] lpc Pointer to the LPC coefficients
|
yading@10
|
768 * @param[out] excitation Buffer for synthesis final excitation
|
yading@10
|
769 * @param[in] fixed_gain Fixed codebook gain for synthesis
|
yading@10
|
770 * @param[in] fixed_vector Algebraic codebook vector
|
yading@10
|
771 * @param[in,out] samples Pointer to the output samples and memory
|
yading@10
|
772 */
|
yading@10
|
773 static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
|
yading@10
|
774 float fixed_gain, const float *fixed_vector,
|
yading@10
|
775 float *samples)
|
yading@10
|
776 {
|
yading@10
|
777 ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
|
yading@10
|
778 ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
|
yading@10
|
779
|
yading@10
|
780 /* emphasize pitch vector contribution in low bitrate modes */
|
yading@10
|
781 if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
|
yading@10
|
782 int i;
|
yading@10
|
783 float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
|
yading@10
|
784 AMRWB_SFR_SIZE);
|
yading@10
|
785
|
yading@10
|
786 // XXX: Weird part in both ref code and spec. A unknown parameter
|
yading@10
|
787 // {beta} seems to be identical to the current pitch gain
|
yading@10
|
788 float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
|
yading@10
|
789
|
yading@10
|
790 for (i = 0; i < AMRWB_SFR_SIZE; i++)
|
yading@10
|
791 excitation[i] += pitch_factor * ctx->pitch_vector[i];
|
yading@10
|
792
|
yading@10
|
793 ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
|
yading@10
|
794 energy, AMRWB_SFR_SIZE);
|
yading@10
|
795 }
|
yading@10
|
796
|
yading@10
|
797 ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
|
yading@10
|
798 AMRWB_SFR_SIZE, LP_ORDER);
|
yading@10
|
799 }
|
yading@10
|
800
|
yading@10
|
801 /**
|
yading@10
|
802 * Apply to synthesis a de-emphasis filter of the form:
|
yading@10
|
803 * H(z) = 1 / (1 - m * z^-1)
|
yading@10
|
804 *
|
yading@10
|
805 * @param[out] out Output buffer
|
yading@10
|
806 * @param[in] in Input samples array with in[-1]
|
yading@10
|
807 * @param[in] m Filter coefficient
|
yading@10
|
808 * @param[in,out] mem State from last filtering
|
yading@10
|
809 */
|
yading@10
|
810 static void de_emphasis(float *out, float *in, float m, float mem[1])
|
yading@10
|
811 {
|
yading@10
|
812 int i;
|
yading@10
|
813
|
yading@10
|
814 out[0] = in[0] + m * mem[0];
|
yading@10
|
815
|
yading@10
|
816 for (i = 1; i < AMRWB_SFR_SIZE; i++)
|
yading@10
|
817 out[i] = in[i] + out[i - 1] * m;
|
yading@10
|
818
|
yading@10
|
819 mem[0] = out[AMRWB_SFR_SIZE - 1];
|
yading@10
|
820 }
|
yading@10
|
821
|
yading@10
|
822 /**
|
yading@10
|
823 * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
|
yading@10
|
824 * a FIR interpolation filter. Uses past data from before *in address.
|
yading@10
|
825 *
|
yading@10
|
826 * @param[out] out Buffer for interpolated signal
|
yading@10
|
827 * @param[in] in Current signal data (length 0.8*o_size)
|
yading@10
|
828 * @param[in] o_size Output signal length
|
yading@10
|
829 * @param[in] ctx The context
|
yading@10
|
830 */
|
yading@10
|
831 static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
|
yading@10
|
832 {
|
yading@10
|
833 const float *in0 = in - UPS_FIR_SIZE + 1;
|
yading@10
|
834 int i, j, k;
|
yading@10
|
835 int int_part = 0, frac_part;
|
yading@10
|
836
|
yading@10
|
837 i = 0;
|
yading@10
|
838 for (j = 0; j < o_size / 5; j++) {
|
yading@10
|
839 out[i] = in[int_part];
|
yading@10
|
840 frac_part = 4;
|
yading@10
|
841 i++;
|
yading@10
|
842
|
yading@10
|
843 for (k = 1; k < 5; k++) {
|
yading@10
|
844 out[i] = ctx->dot_productf(in0 + int_part,
|
yading@10
|
845 upsample_fir[4 - frac_part],
|
yading@10
|
846 UPS_MEM_SIZE);
|
yading@10
|
847 int_part++;
|
yading@10
|
848 frac_part--;
|
yading@10
|
849 i++;
|
yading@10
|
850 }
|
yading@10
|
851 }
|
yading@10
|
852 }
|
yading@10
|
853
|
yading@10
|
854 /**
|
yading@10
|
855 * Calculate the high-band gain based on encoded index (23k85 mode) or
|
yading@10
|
856 * on the low-band speech signal and the Voice Activity Detection flag.
|
yading@10
|
857 *
|
yading@10
|
858 * @param[in] ctx The context
|
yading@10
|
859 * @param[in] synth LB speech synthesis at 12.8k
|
yading@10
|
860 * @param[in] hb_idx Gain index for mode 23k85 only
|
yading@10
|
861 * @param[in] vad VAD flag for the frame
|
yading@10
|
862 */
|
yading@10
|
863 static float find_hb_gain(AMRWBContext *ctx, const float *synth,
|
yading@10
|
864 uint16_t hb_idx, uint8_t vad)
|
yading@10
|
865 {
|
yading@10
|
866 int wsp = (vad > 0);
|
yading@10
|
867 float tilt;
|
yading@10
|
868
|
yading@10
|
869 if (ctx->fr_cur_mode == MODE_23k85)
|
yading@10
|
870 return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
|
yading@10
|
871
|
yading@10
|
872 tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
|
yading@10
|
873 ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
|
yading@10
|
874
|
yading@10
|
875 /* return gain bounded by [0.1, 1.0] */
|
yading@10
|
876 return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
|
yading@10
|
877 }
|
yading@10
|
878
|
yading@10
|
879 /**
|
yading@10
|
880 * Generate the high-band excitation with the same energy from the lower
|
yading@10
|
881 * one and scaled by the given gain.
|
yading@10
|
882 *
|
yading@10
|
883 * @param[in] ctx The context
|
yading@10
|
884 * @param[out] hb_exc Buffer for the excitation
|
yading@10
|
885 * @param[in] synth_exc Low-band excitation used for synthesis
|
yading@10
|
886 * @param[in] hb_gain Wanted excitation gain
|
yading@10
|
887 */
|
yading@10
|
888 static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
|
yading@10
|
889 const float *synth_exc, float hb_gain)
|
yading@10
|
890 {
|
yading@10
|
891 int i;
|
yading@10
|
892 float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc,
|
yading@10
|
893 AMRWB_SFR_SIZE);
|
yading@10
|
894
|
yading@10
|
895 /* Generate a white-noise excitation */
|
yading@10
|
896 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
|
yading@10
|
897 hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
|
yading@10
|
898
|
yading@10
|
899 ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
|
yading@10
|
900 energy * hb_gain * hb_gain,
|
yading@10
|
901 AMRWB_SFR_SIZE_16k);
|
yading@10
|
902 }
|
yading@10
|
903
|
yading@10
|
904 /**
|
yading@10
|
905 * Calculate the auto-correlation for the ISF difference vector.
|
yading@10
|
906 */
|
yading@10
|
907 static float auto_correlation(float *diff_isf, float mean, int lag)
|
yading@10
|
908 {
|
yading@10
|
909 int i;
|
yading@10
|
910 float sum = 0.0;
|
yading@10
|
911
|
yading@10
|
912 for (i = 7; i < LP_ORDER - 2; i++) {
|
yading@10
|
913 float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
|
yading@10
|
914 sum += prod * prod;
|
yading@10
|
915 }
|
yading@10
|
916 return sum;
|
yading@10
|
917 }
|
yading@10
|
918
|
yading@10
|
919 /**
|
yading@10
|
920 * Extrapolate a ISF vector to the 16kHz range (20th order LP)
|
yading@10
|
921 * used at mode 6k60 LP filter for the high frequency band.
|
yading@10
|
922 *
|
yading@10
|
923 * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
|
yading@10
|
924 * values on input
|
yading@10
|
925 */
|
yading@10
|
926 static void extrapolate_isf(float isf[LP_ORDER_16k])
|
yading@10
|
927 {
|
yading@10
|
928 float diff_isf[LP_ORDER - 2], diff_mean;
|
yading@10
|
929 float corr_lag[3];
|
yading@10
|
930 float est, scale;
|
yading@10
|
931 int i, j, i_max_corr;
|
yading@10
|
932
|
yading@10
|
933 isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
|
yading@10
|
934
|
yading@10
|
935 /* Calculate the difference vector */
|
yading@10
|
936 for (i = 0; i < LP_ORDER - 2; i++)
|
yading@10
|
937 diff_isf[i] = isf[i + 1] - isf[i];
|
yading@10
|
938
|
yading@10
|
939 diff_mean = 0.0;
|
yading@10
|
940 for (i = 2; i < LP_ORDER - 2; i++)
|
yading@10
|
941 diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
|
yading@10
|
942
|
yading@10
|
943 /* Find which is the maximum autocorrelation */
|
yading@10
|
944 i_max_corr = 0;
|
yading@10
|
945 for (i = 0; i < 3; i++) {
|
yading@10
|
946 corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
|
yading@10
|
947
|
yading@10
|
948 if (corr_lag[i] > corr_lag[i_max_corr])
|
yading@10
|
949 i_max_corr = i;
|
yading@10
|
950 }
|
yading@10
|
951 i_max_corr++;
|
yading@10
|
952
|
yading@10
|
953 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
|
yading@10
|
954 isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
|
yading@10
|
955 - isf[i - 2 - i_max_corr];
|
yading@10
|
956
|
yading@10
|
957 /* Calculate an estimate for ISF(18) and scale ISF based on the error */
|
yading@10
|
958 est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
|
yading@10
|
959 scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
|
yading@10
|
960 (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
|
yading@10
|
961
|
yading@10
|
962 for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
|
yading@10
|
963 diff_isf[j] = scale * (isf[i] - isf[i - 1]);
|
yading@10
|
964
|
yading@10
|
965 /* Stability insurance */
|
yading@10
|
966 for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
|
yading@10
|
967 if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
|
yading@10
|
968 if (diff_isf[i] > diff_isf[i - 1]) {
|
yading@10
|
969 diff_isf[i - 1] = 5.0 - diff_isf[i];
|
yading@10
|
970 } else
|
yading@10
|
971 diff_isf[i] = 5.0 - diff_isf[i - 1];
|
yading@10
|
972 }
|
yading@10
|
973
|
yading@10
|
974 for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
|
yading@10
|
975 isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
|
yading@10
|
976
|
yading@10
|
977 /* Scale the ISF vector for 16000 Hz */
|
yading@10
|
978 for (i = 0; i < LP_ORDER_16k - 1; i++)
|
yading@10
|
979 isf[i] *= 0.8;
|
yading@10
|
980 }
|
yading@10
|
981
|
yading@10
|
982 /**
|
yading@10
|
983 * Spectral expand the LP coefficients using the equation:
|
yading@10
|
984 * y[i] = x[i] * (gamma ** i)
|
yading@10
|
985 *
|
yading@10
|
986 * @param[out] out Output buffer (may use input array)
|
yading@10
|
987 * @param[in] lpc LP coefficients array
|
yading@10
|
988 * @param[in] gamma Weighting factor
|
yading@10
|
989 * @param[in] size LP array size
|
yading@10
|
990 */
|
yading@10
|
991 static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
|
yading@10
|
992 {
|
yading@10
|
993 int i;
|
yading@10
|
994 float fac = gamma;
|
yading@10
|
995
|
yading@10
|
996 for (i = 0; i < size; i++) {
|
yading@10
|
997 out[i] = lpc[i] * fac;
|
yading@10
|
998 fac *= gamma;
|
yading@10
|
999 }
|
yading@10
|
1000 }
|
yading@10
|
1001
|
yading@10
|
1002 /**
|
yading@10
|
1003 * Conduct 20th order linear predictive coding synthesis for the high
|
yading@10
|
1004 * frequency band excitation at 16kHz.
|
yading@10
|
1005 *
|
yading@10
|
1006 * @param[in] ctx The context
|
yading@10
|
1007 * @param[in] subframe Current subframe index (0 to 3)
|
yading@10
|
1008 * @param[in,out] samples Pointer to the output speech samples
|
yading@10
|
1009 * @param[in] exc Generated white-noise scaled excitation
|
yading@10
|
1010 * @param[in] isf Current frame isf vector
|
yading@10
|
1011 * @param[in] isf_past Past frame final isf vector
|
yading@10
|
1012 */
|
yading@10
|
1013 static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
|
yading@10
|
1014 const float *exc, const float *isf, const float *isf_past)
|
yading@10
|
1015 {
|
yading@10
|
1016 float hb_lpc[LP_ORDER_16k];
|
yading@10
|
1017 enum Mode mode = ctx->fr_cur_mode;
|
yading@10
|
1018
|
yading@10
|
1019 if (mode == MODE_6k60) {
|
yading@10
|
1020 float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
|
yading@10
|
1021 double e_isp[LP_ORDER_16k];
|
yading@10
|
1022
|
yading@10
|
1023 ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
|
yading@10
|
1024 1.0 - isfp_inter[subframe], LP_ORDER);
|
yading@10
|
1025
|
yading@10
|
1026 extrapolate_isf(e_isf);
|
yading@10
|
1027
|
yading@10
|
1028 e_isf[LP_ORDER_16k - 1] *= 2.0;
|
yading@10
|
1029 ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
|
yading@10
|
1030 ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
|
yading@10
|
1031
|
yading@10
|
1032 lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
|
yading@10
|
1033 } else {
|
yading@10
|
1034 lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
|
yading@10
|
1035 }
|
yading@10
|
1036
|
yading@10
|
1037 ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
|
yading@10
|
1038 (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
|
yading@10
|
1039 }
|
yading@10
|
1040
|
yading@10
|
1041 /**
|
yading@10
|
1042 * Apply a 15th order filter to high-band samples.
|
yading@10
|
1043 * The filter characteristic depends on the given coefficients.
|
yading@10
|
1044 *
|
yading@10
|
1045 * @param[out] out Buffer for filtered output
|
yading@10
|
1046 * @param[in] fir_coef Filter coefficients
|
yading@10
|
1047 * @param[in,out] mem State from last filtering (updated)
|
yading@10
|
1048 * @param[in] in Input speech data (high-band)
|
yading@10
|
1049 *
|
yading@10
|
1050 * @remark It is safe to pass the same array in in and out parameters
|
yading@10
|
1051 */
|
yading@10
|
1052
|
yading@10
|
1053 #ifndef hb_fir_filter
|
yading@10
|
1054 static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
|
yading@10
|
1055 float mem[HB_FIR_SIZE], const float *in)
|
yading@10
|
1056 {
|
yading@10
|
1057 int i, j;
|
yading@10
|
1058 float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
|
yading@10
|
1059
|
yading@10
|
1060 memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
|
yading@10
|
1061 memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
|
yading@10
|
1062
|
yading@10
|
1063 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
|
yading@10
|
1064 out[i] = 0.0;
|
yading@10
|
1065 for (j = 0; j <= HB_FIR_SIZE; j++)
|
yading@10
|
1066 out[i] += data[i + j] * fir_coef[j];
|
yading@10
|
1067 }
|
yading@10
|
1068
|
yading@10
|
1069 memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
|
yading@10
|
1070 }
|
yading@10
|
1071 #endif /* hb_fir_filter */
|
yading@10
|
1072
|
yading@10
|
1073 /**
|
yading@10
|
1074 * Update context state before the next subframe.
|
yading@10
|
1075 */
|
yading@10
|
1076 static void update_sub_state(AMRWBContext *ctx)
|
yading@10
|
1077 {
|
yading@10
|
1078 memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
|
yading@10
|
1079 (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
|
yading@10
|
1080
|
yading@10
|
1081 memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
|
yading@10
|
1082 memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
|
yading@10
|
1083
|
yading@10
|
1084 memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
|
yading@10
|
1085 LP_ORDER * sizeof(float));
|
yading@10
|
1086 memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
|
yading@10
|
1087 UPS_MEM_SIZE * sizeof(float));
|
yading@10
|
1088 memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
|
yading@10
|
1089 LP_ORDER_16k * sizeof(float));
|
yading@10
|
1090 }
|
yading@10
|
1091
|
yading@10
|
1092 static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
|
yading@10
|
1093 int *got_frame_ptr, AVPacket *avpkt)
|
yading@10
|
1094 {
|
yading@10
|
1095 AMRWBContext *ctx = avctx->priv_data;
|
yading@10
|
1096 AVFrame *frame = data;
|
yading@10
|
1097 AMRWBFrame *cf = &ctx->frame;
|
yading@10
|
1098 const uint8_t *buf = avpkt->data;
|
yading@10
|
1099 int buf_size = avpkt->size;
|
yading@10
|
1100 int expected_fr_size, header_size;
|
yading@10
|
1101 float *buf_out;
|
yading@10
|
1102 float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
|
yading@10
|
1103 float fixed_gain_factor; // fixed gain correction factor (gamma)
|
yading@10
|
1104 float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
|
yading@10
|
1105 float synth_fixed_gain; // the fixed gain that synthesis should use
|
yading@10
|
1106 float voice_fac, stab_fac; // parameters used for gain smoothing
|
yading@10
|
1107 float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
|
yading@10
|
1108 float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
|
yading@10
|
1109 float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
|
yading@10
|
1110 float hb_gain;
|
yading@10
|
1111 int sub, i, ret;
|
yading@10
|
1112
|
yading@10
|
1113 /* get output buffer */
|
yading@10
|
1114 frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k;
|
yading@10
|
1115 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
|
yading@10
|
1116 return ret;
|
yading@10
|
1117 buf_out = (float *)frame->data[0];
|
yading@10
|
1118
|
yading@10
|
1119 header_size = decode_mime_header(ctx, buf);
|
yading@10
|
1120 if (ctx->fr_cur_mode > MODE_SID) {
|
yading@10
|
1121 av_log(avctx, AV_LOG_ERROR,
|
yading@10
|
1122 "Invalid mode %d\n", ctx->fr_cur_mode);
|
yading@10
|
1123 return AVERROR_INVALIDDATA;
|
yading@10
|
1124 }
|
yading@10
|
1125 expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
|
yading@10
|
1126
|
yading@10
|
1127 if (buf_size < expected_fr_size) {
|
yading@10
|
1128 av_log(avctx, AV_LOG_ERROR,
|
yading@10
|
1129 "Frame too small (%d bytes). Truncated file?\n", buf_size);
|
yading@10
|
1130 *got_frame_ptr = 0;
|
yading@10
|
1131 return AVERROR_INVALIDDATA;
|
yading@10
|
1132 }
|
yading@10
|
1133
|
yading@10
|
1134 if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
|
yading@10
|
1135 av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
|
yading@10
|
1136
|
yading@10
|
1137 if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
|
yading@10
|
1138 avpriv_request_sample(avctx, "SID mode");
|
yading@10
|
1139 return AVERROR_PATCHWELCOME;
|
yading@10
|
1140 }
|
yading@10
|
1141
|
yading@10
|
1142 ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
|
yading@10
|
1143 buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
|
yading@10
|
1144
|
yading@10
|
1145 /* Decode the quantized ISF vector */
|
yading@10
|
1146 if (ctx->fr_cur_mode == MODE_6k60) {
|
yading@10
|
1147 decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
|
yading@10
|
1148 } else {
|
yading@10
|
1149 decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
|
yading@10
|
1150 }
|
yading@10
|
1151
|
yading@10
|
1152 isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
|
yading@10
|
1153 ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
|
yading@10
|
1154
|
yading@10
|
1155 stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
|
yading@10
|
1156
|
yading@10
|
1157 ctx->isf_cur[LP_ORDER - 1] *= 2.0;
|
yading@10
|
1158 ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
|
yading@10
|
1159
|
yading@10
|
1160 /* Generate a ISP vector for each subframe */
|
yading@10
|
1161 if (ctx->first_frame) {
|
yading@10
|
1162 ctx->first_frame = 0;
|
yading@10
|
1163 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
|
yading@10
|
1164 }
|
yading@10
|
1165 interpolate_isp(ctx->isp, ctx->isp_sub4_past);
|
yading@10
|
1166
|
yading@10
|
1167 for (sub = 0; sub < 4; sub++)
|
yading@10
|
1168 ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
|
yading@10
|
1169
|
yading@10
|
1170 for (sub = 0; sub < 4; sub++) {
|
yading@10
|
1171 const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
|
yading@10
|
1172 float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
|
yading@10
|
1173
|
yading@10
|
1174 /* Decode adaptive codebook (pitch vector) */
|
yading@10
|
1175 decode_pitch_vector(ctx, cur_subframe, sub);
|
yading@10
|
1176 /* Decode innovative codebook (fixed vector) */
|
yading@10
|
1177 decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
|
yading@10
|
1178 cur_subframe->pul_il, ctx->fr_cur_mode);
|
yading@10
|
1179
|
yading@10
|
1180 pitch_sharpening(ctx, ctx->fixed_vector);
|
yading@10
|
1181
|
yading@10
|
1182 decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
|
yading@10
|
1183 &fixed_gain_factor, &ctx->pitch_gain[0]);
|
yading@10
|
1184
|
yading@10
|
1185 ctx->fixed_gain[0] =
|
yading@10
|
1186 ff_amr_set_fixed_gain(fixed_gain_factor,
|
yading@10
|
1187 ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
|
yading@10
|
1188 ctx->fixed_vector,
|
yading@10
|
1189 AMRWB_SFR_SIZE) /
|
yading@10
|
1190 AMRWB_SFR_SIZE,
|
yading@10
|
1191 ctx->prediction_error,
|
yading@10
|
1192 ENERGY_MEAN, energy_pred_fac);
|
yading@10
|
1193
|
yading@10
|
1194 /* Calculate voice factor and store tilt for next subframe */
|
yading@10
|
1195 voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
|
yading@10
|
1196 ctx->fixed_vector, ctx->fixed_gain[0],
|
yading@10
|
1197 &ctx->celpm_ctx);
|
yading@10
|
1198 ctx->tilt_coef = voice_fac * 0.25 + 0.25;
|
yading@10
|
1199
|
yading@10
|
1200 /* Construct current excitation */
|
yading@10
|
1201 for (i = 0; i < AMRWB_SFR_SIZE; i++) {
|
yading@10
|
1202 ctx->excitation[i] *= ctx->pitch_gain[0];
|
yading@10
|
1203 ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
|
yading@10
|
1204 ctx->excitation[i] = truncf(ctx->excitation[i]);
|
yading@10
|
1205 }
|
yading@10
|
1206
|
yading@10
|
1207 /* Post-processing of excitation elements */
|
yading@10
|
1208 synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
|
yading@10
|
1209 voice_fac, stab_fac);
|
yading@10
|
1210
|
yading@10
|
1211 synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
|
yading@10
|
1212 spare_vector);
|
yading@10
|
1213
|
yading@10
|
1214 pitch_enhancer(synth_fixed_vector, voice_fac);
|
yading@10
|
1215
|
yading@10
|
1216 synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
|
yading@10
|
1217 synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
|
yading@10
|
1218
|
yading@10
|
1219 /* Synthesis speech post-processing */
|
yading@10
|
1220 de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
|
yading@10
|
1221 &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
|
yading@10
|
1222
|
yading@10
|
1223 ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
|
yading@10
|
1224 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
|
yading@10
|
1225 hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
|
yading@10
|
1226
|
yading@10
|
1227 upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
|
yading@10
|
1228 AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
|
yading@10
|
1229
|
yading@10
|
1230 /* High frequency band (6.4 - 7.0 kHz) generation part */
|
yading@10
|
1231 ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
|
yading@10
|
1232 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
|
yading@10
|
1233 hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
|
yading@10
|
1234
|
yading@10
|
1235 hb_gain = find_hb_gain(ctx, hb_samples,
|
yading@10
|
1236 cur_subframe->hb_gain, cf->vad);
|
yading@10
|
1237
|
yading@10
|
1238 scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
|
yading@10
|
1239
|
yading@10
|
1240 hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
|
yading@10
|
1241 hb_exc, ctx->isf_cur, ctx->isf_past_final);
|
yading@10
|
1242
|
yading@10
|
1243 /* High-band post-processing filters */
|
yading@10
|
1244 hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
|
yading@10
|
1245 &ctx->samples_hb[LP_ORDER_16k]);
|
yading@10
|
1246
|
yading@10
|
1247 if (ctx->fr_cur_mode == MODE_23k85)
|
yading@10
|
1248 hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
|
yading@10
|
1249 hb_samples);
|
yading@10
|
1250
|
yading@10
|
1251 /* Add the low and high frequency bands */
|
yading@10
|
1252 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
|
yading@10
|
1253 sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
|
yading@10
|
1254
|
yading@10
|
1255 /* Update buffers and history */
|
yading@10
|
1256 update_sub_state(ctx);
|
yading@10
|
1257 }
|
yading@10
|
1258
|
yading@10
|
1259 /* update state for next frame */
|
yading@10
|
1260 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
|
yading@10
|
1261 memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
|
yading@10
|
1262
|
yading@10
|
1263 *got_frame_ptr = 1;
|
yading@10
|
1264
|
yading@10
|
1265 return expected_fr_size;
|
yading@10
|
1266 }
|
yading@10
|
1267
|
yading@10
|
1268 AVCodec ff_amrwb_decoder = {
|
yading@10
|
1269 .name = "amrwb",
|
yading@10
|
1270 .type = AVMEDIA_TYPE_AUDIO,
|
yading@10
|
1271 .id = AV_CODEC_ID_AMR_WB,
|
yading@10
|
1272 .priv_data_size = sizeof(AMRWBContext),
|
yading@10
|
1273 .init = amrwb_decode_init,
|
yading@10
|
1274 .decode = amrwb_decode_frame,
|
yading@10
|
1275 .capabilities = CODEC_CAP_DR1,
|
yading@10
|
1276 .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
|
yading@10
|
1277 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
|
yading@10
|
1278 AV_SAMPLE_FMT_NONE },
|
yading@10
|
1279 };
|