yading@10
|
1 /*
|
yading@10
|
2 * AMR narrowband decoder
|
yading@10
|
3 * Copyright (c) 2006-2007 Robert Swain
|
yading@10
|
4 * Copyright (c) 2009 Colin McQuillan
|
yading@10
|
5 *
|
yading@10
|
6 * This file is part of FFmpeg.
|
yading@10
|
7 *
|
yading@10
|
8 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
9 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
10 * License as published by the Free Software Foundation; either
|
yading@10
|
11 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
12 *
|
yading@10
|
13 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
yading@10
|
16 * Lesser General Public License for more details.
|
yading@10
|
17 *
|
yading@10
|
18 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
19 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
21 */
|
yading@10
|
22
|
yading@10
|
23
|
yading@10
|
24 /**
|
yading@10
|
25 * @file
|
yading@10
|
26 * AMR narrowband decoder
|
yading@10
|
27 *
|
yading@10
|
28 * This decoder uses floats for simplicity and so is not bit-exact. One
|
yading@10
|
29 * difference is that differences in phase can accumulate. The test sequences
|
yading@10
|
30 * in 3GPP TS 26.074 can still be useful.
|
yading@10
|
31 *
|
yading@10
|
32 * - Comparing this file's output to the output of the ref decoder gives a
|
yading@10
|
33 * PSNR of 30 to 80. Plotting the output samples shows a difference in
|
yading@10
|
34 * phase in some areas.
|
yading@10
|
35 *
|
yading@10
|
36 * - Comparing both decoders against their input, this decoder gives a similar
|
yading@10
|
37 * PSNR. If the test sequence homing frames are removed (this decoder does
|
yading@10
|
38 * not detect them), the PSNR is at least as good as the reference on 140
|
yading@10
|
39 * out of 169 tests.
|
yading@10
|
40 */
|
yading@10
|
41
|
yading@10
|
42
|
yading@10
|
43 #include <string.h>
|
yading@10
|
44 #include <math.h>
|
yading@10
|
45
|
yading@10
|
46 #include "libavutil/channel_layout.h"
|
yading@10
|
47 #include "libavutil/float_dsp.h"
|
yading@10
|
48 #include "avcodec.h"
|
yading@10
|
49 #include "libavutil/common.h"
|
yading@10
|
50 #include "libavutil/avassert.h"
|
yading@10
|
51 #include "celp_math.h"
|
yading@10
|
52 #include "celp_filters.h"
|
yading@10
|
53 #include "acelp_filters.h"
|
yading@10
|
54 #include "acelp_vectors.h"
|
yading@10
|
55 #include "acelp_pitch_delay.h"
|
yading@10
|
56 #include "lsp.h"
|
yading@10
|
57 #include "amr.h"
|
yading@10
|
58 #include "internal.h"
|
yading@10
|
59
|
yading@10
|
60 #include "amrnbdata.h"
|
yading@10
|
61
|
yading@10
|
62 #define AMR_BLOCK_SIZE 160 ///< samples per frame
|
yading@10
|
63 #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
|
yading@10
|
64
|
yading@10
|
65 /**
|
yading@10
|
66 * Scale from constructed speech to [-1,1]
|
yading@10
|
67 *
|
yading@10
|
68 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
|
yading@10
|
69 * upscales by two (section 6.2.2).
|
yading@10
|
70 *
|
yading@10
|
71 * Fundamentally, this scale is determined by energy_mean through
|
yading@10
|
72 * the fixed vector contribution to the excitation vector.
|
yading@10
|
73 */
|
yading@10
|
74 #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
|
yading@10
|
75
|
yading@10
|
76 /** Prediction factor for 12.2kbit/s mode */
|
yading@10
|
77 #define PRED_FAC_MODE_12k2 0.65
|
yading@10
|
78
|
yading@10
|
79 #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
|
yading@10
|
80 #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
|
yading@10
|
81 #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
|
yading@10
|
82
|
yading@10
|
83 /** Initial energy in dB. Also used for bad frames (unimplemented). */
|
yading@10
|
84 #define MIN_ENERGY -14.0
|
yading@10
|
85
|
yading@10
|
86 /** Maximum sharpening factor
|
yading@10
|
87 *
|
yading@10
|
88 * The specification says 0.8, which should be 13107, but the reference C code
|
yading@10
|
89 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
|
yading@10
|
90 */
|
yading@10
|
91 #define SHARP_MAX 0.79449462890625
|
yading@10
|
92
|
yading@10
|
93 /** Number of impulse response coefficients used for tilt factor */
|
yading@10
|
94 #define AMR_TILT_RESPONSE 22
|
yading@10
|
95 /** Tilt factor = 1st reflection coefficient * gamma_t */
|
yading@10
|
96 #define AMR_TILT_GAMMA_T 0.8
|
yading@10
|
97 /** Adaptive gain control factor used in post-filter */
|
yading@10
|
98 #define AMR_AGC_ALPHA 0.9
|
yading@10
|
99
|
yading@10
|
100 typedef struct AMRContext {
|
yading@10
|
101 AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
|
yading@10
|
102 uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
|
yading@10
|
103 enum Mode cur_frame_mode;
|
yading@10
|
104
|
yading@10
|
105 int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
|
yading@10
|
106 double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
|
yading@10
|
107 double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
|
yading@10
|
108
|
yading@10
|
109 float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
|
yading@10
|
110 float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
|
yading@10
|
111
|
yading@10
|
112 float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
|
yading@10
|
113
|
yading@10
|
114 uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
|
yading@10
|
115
|
yading@10
|
116 float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
|
yading@10
|
117 float *excitation; ///< pointer to the current excitation vector in excitation_buf
|
yading@10
|
118
|
yading@10
|
119 float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
|
yading@10
|
120 float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
|
yading@10
|
121
|
yading@10
|
122 float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
|
yading@10
|
123 float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
|
yading@10
|
124 float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
|
yading@10
|
125
|
yading@10
|
126 float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
|
yading@10
|
127 uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
|
yading@10
|
128 uint8_t hang_count; ///< the number of subframes since a hangover period started
|
yading@10
|
129
|
yading@10
|
130 float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
|
yading@10
|
131 uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
|
yading@10
|
132 uint8_t ir_filter_onset; ///< flag for impulse response filter strength
|
yading@10
|
133
|
yading@10
|
134 float postfilter_mem[10]; ///< previous intermediate values in the formant filter
|
yading@10
|
135 float tilt_mem; ///< previous input to tilt compensation filter
|
yading@10
|
136 float postfilter_agc; ///< previous factor used for adaptive gain control
|
yading@10
|
137 float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
|
yading@10
|
138
|
yading@10
|
139 float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
|
yading@10
|
140
|
yading@10
|
141 ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
|
yading@10
|
142 ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
|
yading@10
|
143 CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
|
yading@10
|
144 CELPMContext celpm_ctx; ///< context for fixed point math operations
|
yading@10
|
145
|
yading@10
|
146 } AMRContext;
|
yading@10
|
147
|
yading@10
|
148 /** Double version of ff_weighted_vector_sumf() */
|
yading@10
|
149 static void weighted_vector_sumd(double *out, const double *in_a,
|
yading@10
|
150 const double *in_b, double weight_coeff_a,
|
yading@10
|
151 double weight_coeff_b, int length)
|
yading@10
|
152 {
|
yading@10
|
153 int i;
|
yading@10
|
154
|
yading@10
|
155 for (i = 0; i < length; i++)
|
yading@10
|
156 out[i] = weight_coeff_a * in_a[i]
|
yading@10
|
157 + weight_coeff_b * in_b[i];
|
yading@10
|
158 }
|
yading@10
|
159
|
yading@10
|
160 static av_cold int amrnb_decode_init(AVCodecContext *avctx)
|
yading@10
|
161 {
|
yading@10
|
162 AMRContext *p = avctx->priv_data;
|
yading@10
|
163 int i;
|
yading@10
|
164
|
yading@10
|
165 if (avctx->channels > 1) {
|
yading@10
|
166 avpriv_report_missing_feature(avctx, "multi-channel AMR");
|
yading@10
|
167 return AVERROR_PATCHWELCOME;
|
yading@10
|
168 }
|
yading@10
|
169
|
yading@10
|
170 avctx->channels = 1;
|
yading@10
|
171 avctx->channel_layout = AV_CH_LAYOUT_MONO;
|
yading@10
|
172 if (!avctx->sample_rate)
|
yading@10
|
173 avctx->sample_rate = 8000;
|
yading@10
|
174 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
|
yading@10
|
175
|
yading@10
|
176 // p->excitation always points to the same position in p->excitation_buf
|
yading@10
|
177 p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
|
yading@10
|
178
|
yading@10
|
179 for (i = 0; i < LP_FILTER_ORDER; i++) {
|
yading@10
|
180 p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
|
yading@10
|
181 p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
|
yading@10
|
182 }
|
yading@10
|
183
|
yading@10
|
184 for (i = 0; i < 4; i++)
|
yading@10
|
185 p->prediction_error[i] = MIN_ENERGY;
|
yading@10
|
186
|
yading@10
|
187 ff_acelp_filter_init(&p->acelpf_ctx);
|
yading@10
|
188 ff_acelp_vectors_init(&p->acelpv_ctx);
|
yading@10
|
189 ff_celp_filter_init(&p->celpf_ctx);
|
yading@10
|
190 ff_celp_math_init(&p->celpm_ctx);
|
yading@10
|
191
|
yading@10
|
192 return 0;
|
yading@10
|
193 }
|
yading@10
|
194
|
yading@10
|
195
|
yading@10
|
196 /**
|
yading@10
|
197 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
|
yading@10
|
198 *
|
yading@10
|
199 * The order of speech bits is specified by 3GPP TS 26.101.
|
yading@10
|
200 *
|
yading@10
|
201 * @param p the context
|
yading@10
|
202 * @param buf pointer to the input buffer
|
yading@10
|
203 * @param buf_size size of the input buffer
|
yading@10
|
204 *
|
yading@10
|
205 * @return the frame mode
|
yading@10
|
206 */
|
yading@10
|
207 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
|
yading@10
|
208 int buf_size)
|
yading@10
|
209 {
|
yading@10
|
210 enum Mode mode;
|
yading@10
|
211
|
yading@10
|
212 // Decode the first octet.
|
yading@10
|
213 mode = buf[0] >> 3 & 0x0F; // frame type
|
yading@10
|
214 p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
|
yading@10
|
215
|
yading@10
|
216 if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
|
yading@10
|
217 return NO_DATA;
|
yading@10
|
218 }
|
yading@10
|
219
|
yading@10
|
220 if (mode < MODE_DTX)
|
yading@10
|
221 ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
|
yading@10
|
222 amr_unpacking_bitmaps_per_mode[mode]);
|
yading@10
|
223
|
yading@10
|
224 return mode;
|
yading@10
|
225 }
|
yading@10
|
226
|
yading@10
|
227
|
yading@10
|
228 /// @name AMR pitch LPC coefficient decoding functions
|
yading@10
|
229 /// @{
|
yading@10
|
230
|
yading@10
|
231 /**
|
yading@10
|
232 * Interpolate the LSF vector (used for fixed gain smoothing).
|
yading@10
|
233 * The interpolation is done over all four subframes even in MODE_12k2.
|
yading@10
|
234 *
|
yading@10
|
235 * @param[in] ctx The Context
|
yading@10
|
236 * @param[in,out] lsf_q LSFs in [0,1] for each subframe
|
yading@10
|
237 * @param[in] lsf_new New LSFs in [0,1] for subframe 4
|
yading@10
|
238 */
|
yading@10
|
239 static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
|
yading@10
|
240 {
|
yading@10
|
241 int i;
|
yading@10
|
242
|
yading@10
|
243 for (i = 0; i < 4; i++)
|
yading@10
|
244 ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
|
yading@10
|
245 0.25 * (3 - i), 0.25 * (i + 1),
|
yading@10
|
246 LP_FILTER_ORDER);
|
yading@10
|
247 }
|
yading@10
|
248
|
yading@10
|
249 /**
|
yading@10
|
250 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
|
yading@10
|
251 *
|
yading@10
|
252 * @param p the context
|
yading@10
|
253 * @param lsp output LSP vector
|
yading@10
|
254 * @param lsf_no_r LSF vector without the residual vector added
|
yading@10
|
255 * @param lsf_quantizer pointers to LSF dictionary tables
|
yading@10
|
256 * @param quantizer_offset offset in tables
|
yading@10
|
257 * @param sign for the 3 dictionary table
|
yading@10
|
258 * @param update store data for computing the next frame's LSFs
|
yading@10
|
259 */
|
yading@10
|
260 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
|
yading@10
|
261 const float lsf_no_r[LP_FILTER_ORDER],
|
yading@10
|
262 const int16_t *lsf_quantizer[5],
|
yading@10
|
263 const int quantizer_offset,
|
yading@10
|
264 const int sign, const int update)
|
yading@10
|
265 {
|
yading@10
|
266 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
|
yading@10
|
267 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
|
yading@10
|
268 int i;
|
yading@10
|
269
|
yading@10
|
270 for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
|
yading@10
|
271 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
|
yading@10
|
272 2 * sizeof(*lsf_r));
|
yading@10
|
273
|
yading@10
|
274 if (sign) {
|
yading@10
|
275 lsf_r[4] *= -1;
|
yading@10
|
276 lsf_r[5] *= -1;
|
yading@10
|
277 }
|
yading@10
|
278
|
yading@10
|
279 if (update)
|
yading@10
|
280 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
|
yading@10
|
281
|
yading@10
|
282 for (i = 0; i < LP_FILTER_ORDER; i++)
|
yading@10
|
283 lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
|
yading@10
|
284
|
yading@10
|
285 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
|
yading@10
|
286
|
yading@10
|
287 if (update)
|
yading@10
|
288 interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
|
yading@10
|
289
|
yading@10
|
290 ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
|
yading@10
|
291 }
|
yading@10
|
292
|
yading@10
|
293 /**
|
yading@10
|
294 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
|
yading@10
|
295 *
|
yading@10
|
296 * @param p pointer to the AMRContext
|
yading@10
|
297 */
|
yading@10
|
298 static void lsf2lsp_5(AMRContext *p)
|
yading@10
|
299 {
|
yading@10
|
300 const uint16_t *lsf_param = p->frame.lsf;
|
yading@10
|
301 float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
|
yading@10
|
302 const int16_t *lsf_quantizer[5];
|
yading@10
|
303 int i;
|
yading@10
|
304
|
yading@10
|
305 lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
|
yading@10
|
306 lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
|
yading@10
|
307 lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
|
yading@10
|
308 lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
|
yading@10
|
309 lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
|
yading@10
|
310
|
yading@10
|
311 for (i = 0; i < LP_FILTER_ORDER; i++)
|
yading@10
|
312 lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
|
yading@10
|
313
|
yading@10
|
314 lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
|
yading@10
|
315 lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
|
yading@10
|
316
|
yading@10
|
317 // interpolate LSP vectors at subframes 1 and 3
|
yading@10
|
318 weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
|
yading@10
|
319 weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
|
yading@10
|
320 }
|
yading@10
|
321
|
yading@10
|
322 /**
|
yading@10
|
323 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
|
yading@10
|
324 *
|
yading@10
|
325 * @param p pointer to the AMRContext
|
yading@10
|
326 */
|
yading@10
|
327 static void lsf2lsp_3(AMRContext *p)
|
yading@10
|
328 {
|
yading@10
|
329 const uint16_t *lsf_param = p->frame.lsf;
|
yading@10
|
330 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
|
yading@10
|
331 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
|
yading@10
|
332 const int16_t *lsf_quantizer;
|
yading@10
|
333 int i, j;
|
yading@10
|
334
|
yading@10
|
335 lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
|
yading@10
|
336 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
|
yading@10
|
337
|
yading@10
|
338 lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
|
yading@10
|
339 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
|
yading@10
|
340
|
yading@10
|
341 lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
|
yading@10
|
342 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
|
yading@10
|
343
|
yading@10
|
344 // calculate mean-removed LSF vector and add mean
|
yading@10
|
345 for (i = 0; i < LP_FILTER_ORDER; i++)
|
yading@10
|
346 lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
|
yading@10
|
347
|
yading@10
|
348 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
|
yading@10
|
349
|
yading@10
|
350 // store data for computing the next frame's LSFs
|
yading@10
|
351 interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
|
yading@10
|
352 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
|
yading@10
|
353
|
yading@10
|
354 ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
|
yading@10
|
355
|
yading@10
|
356 // interpolate LSP vectors at subframes 1, 2 and 3
|
yading@10
|
357 for (i = 1; i <= 3; i++)
|
yading@10
|
358 for(j = 0; j < LP_FILTER_ORDER; j++)
|
yading@10
|
359 p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
|
yading@10
|
360 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
|
yading@10
|
361 }
|
yading@10
|
362
|
yading@10
|
363 /// @}
|
yading@10
|
364
|
yading@10
|
365
|
yading@10
|
366 /// @name AMR pitch vector decoding functions
|
yading@10
|
367 /// @{
|
yading@10
|
368
|
yading@10
|
369 /**
|
yading@10
|
370 * Like ff_decode_pitch_lag(), but with 1/6 resolution
|
yading@10
|
371 */
|
yading@10
|
372 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
|
yading@10
|
373 const int prev_lag_int, const int subframe)
|
yading@10
|
374 {
|
yading@10
|
375 if (subframe == 0 || subframe == 2) {
|
yading@10
|
376 if (pitch_index < 463) {
|
yading@10
|
377 *lag_int = (pitch_index + 107) * 10923 >> 16;
|
yading@10
|
378 *lag_frac = pitch_index - *lag_int * 6 + 105;
|
yading@10
|
379 } else {
|
yading@10
|
380 *lag_int = pitch_index - 368;
|
yading@10
|
381 *lag_frac = 0;
|
yading@10
|
382 }
|
yading@10
|
383 } else {
|
yading@10
|
384 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
|
yading@10
|
385 *lag_frac = pitch_index - *lag_int * 6 - 3;
|
yading@10
|
386 *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
|
yading@10
|
387 PITCH_DELAY_MAX - 9);
|
yading@10
|
388 }
|
yading@10
|
389 }
|
yading@10
|
390
|
yading@10
|
391 static void decode_pitch_vector(AMRContext *p,
|
yading@10
|
392 const AMRNBSubframe *amr_subframe,
|
yading@10
|
393 const int subframe)
|
yading@10
|
394 {
|
yading@10
|
395 int pitch_lag_int, pitch_lag_frac;
|
yading@10
|
396 enum Mode mode = p->cur_frame_mode;
|
yading@10
|
397
|
yading@10
|
398 if (p->cur_frame_mode == MODE_12k2) {
|
yading@10
|
399 decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
|
yading@10
|
400 amr_subframe->p_lag, p->pitch_lag_int,
|
yading@10
|
401 subframe);
|
yading@10
|
402 } else
|
yading@10
|
403 ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
|
yading@10
|
404 amr_subframe->p_lag,
|
yading@10
|
405 p->pitch_lag_int, subframe,
|
yading@10
|
406 mode != MODE_4k75 && mode != MODE_5k15,
|
yading@10
|
407 mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
|
yading@10
|
408
|
yading@10
|
409 p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
|
yading@10
|
410
|
yading@10
|
411 pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
|
yading@10
|
412
|
yading@10
|
413 pitch_lag_int += pitch_lag_frac > 0;
|
yading@10
|
414
|
yading@10
|
415 /* Calculate the pitch vector by interpolating the past excitation at the
|
yading@10
|
416 pitch lag using a b60 hamming windowed sinc function. */
|
yading@10
|
417 p->acelpf_ctx.acelp_interpolatef(p->excitation,
|
yading@10
|
418 p->excitation + 1 - pitch_lag_int,
|
yading@10
|
419 ff_b60_sinc, 6,
|
yading@10
|
420 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
|
yading@10
|
421 10, AMR_SUBFRAME_SIZE);
|
yading@10
|
422
|
yading@10
|
423 memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
|
yading@10
|
424 }
|
yading@10
|
425
|
yading@10
|
426 /// @}
|
yading@10
|
427
|
yading@10
|
428
|
yading@10
|
429 /// @name AMR algebraic code book (fixed) vector decoding functions
|
yading@10
|
430 /// @{
|
yading@10
|
431
|
yading@10
|
432 /**
|
yading@10
|
433 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
|
yading@10
|
434 */
|
yading@10
|
435 static void decode_10bit_pulse(int code, int pulse_position[8],
|
yading@10
|
436 int i1, int i2, int i3)
|
yading@10
|
437 {
|
yading@10
|
438 // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
|
yading@10
|
439 // the 3 pulses and the upper 7 bits being coded in base 5
|
yading@10
|
440 const uint8_t *positions = base_five_table[code >> 3];
|
yading@10
|
441 pulse_position[i1] = (positions[2] << 1) + ( code & 1);
|
yading@10
|
442 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
|
yading@10
|
443 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
|
yading@10
|
444 }
|
yading@10
|
445
|
yading@10
|
446 /**
|
yading@10
|
447 * Decode the algebraic codebook index to pulse positions and signs and
|
yading@10
|
448 * construct the algebraic codebook vector for MODE_10k2.
|
yading@10
|
449 *
|
yading@10
|
450 * @param fixed_index positions of the eight pulses
|
yading@10
|
451 * @param fixed_sparse pointer to the algebraic codebook vector
|
yading@10
|
452 */
|
yading@10
|
453 static void decode_8_pulses_31bits(const int16_t *fixed_index,
|
yading@10
|
454 AMRFixed *fixed_sparse)
|
yading@10
|
455 {
|
yading@10
|
456 int pulse_position[8];
|
yading@10
|
457 int i, temp;
|
yading@10
|
458
|
yading@10
|
459 decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
|
yading@10
|
460 decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
|
yading@10
|
461
|
yading@10
|
462 // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
|
yading@10
|
463 // the 2 pulses and the upper 5 bits being coded in base 5
|
yading@10
|
464 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
|
yading@10
|
465 pulse_position[3] = temp % 5;
|
yading@10
|
466 pulse_position[7] = temp / 5;
|
yading@10
|
467 if (pulse_position[7] & 1)
|
yading@10
|
468 pulse_position[3] = 4 - pulse_position[3];
|
yading@10
|
469 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
|
yading@10
|
470 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
|
yading@10
|
471
|
yading@10
|
472 fixed_sparse->n = 8;
|
yading@10
|
473 for (i = 0; i < 4; i++) {
|
yading@10
|
474 const int pos1 = (pulse_position[i] << 2) + i;
|
yading@10
|
475 const int pos2 = (pulse_position[i + 4] << 2) + i;
|
yading@10
|
476 const float sign = fixed_index[i] ? -1.0 : 1.0;
|
yading@10
|
477 fixed_sparse->x[i ] = pos1;
|
yading@10
|
478 fixed_sparse->x[i + 4] = pos2;
|
yading@10
|
479 fixed_sparse->y[i ] = sign;
|
yading@10
|
480 fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
|
yading@10
|
481 }
|
yading@10
|
482 }
|
yading@10
|
483
|
yading@10
|
484 /**
|
yading@10
|
485 * Decode the algebraic codebook index to pulse positions and signs,
|
yading@10
|
486 * then construct the algebraic codebook vector.
|
yading@10
|
487 *
|
yading@10
|
488 * nb of pulses | bits encoding pulses
|
yading@10
|
489 * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
|
yading@10
|
490 * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
|
yading@10
|
491 * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
|
yading@10
|
492 * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
|
yading@10
|
493 *
|
yading@10
|
494 * @param fixed_sparse pointer to the algebraic codebook vector
|
yading@10
|
495 * @param pulses algebraic codebook indexes
|
yading@10
|
496 * @param mode mode of the current frame
|
yading@10
|
497 * @param subframe current subframe number
|
yading@10
|
498 */
|
yading@10
|
499 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
|
yading@10
|
500 const enum Mode mode, const int subframe)
|
yading@10
|
501 {
|
yading@10
|
502 av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
|
yading@10
|
503
|
yading@10
|
504 if (mode == MODE_12k2) {
|
yading@10
|
505 ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
|
yading@10
|
506 } else if (mode == MODE_10k2) {
|
yading@10
|
507 decode_8_pulses_31bits(pulses, fixed_sparse);
|
yading@10
|
508 } else {
|
yading@10
|
509 int *pulse_position = fixed_sparse->x;
|
yading@10
|
510 int i, pulse_subset;
|
yading@10
|
511 const int fixed_index = pulses[0];
|
yading@10
|
512
|
yading@10
|
513 if (mode <= MODE_5k15) {
|
yading@10
|
514 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
|
yading@10
|
515 pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
|
yading@10
|
516 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
|
yading@10
|
517 fixed_sparse->n = 2;
|
yading@10
|
518 } else if (mode == MODE_5k9) {
|
yading@10
|
519 pulse_subset = ((fixed_index & 1) << 1) + 1;
|
yading@10
|
520 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
|
yading@10
|
521 pulse_subset = (fixed_index >> 4) & 3;
|
yading@10
|
522 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
|
yading@10
|
523 fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
|
yading@10
|
524 } else if (mode == MODE_6k7) {
|
yading@10
|
525 pulse_position[0] = (fixed_index & 7) * 5;
|
yading@10
|
526 pulse_subset = (fixed_index >> 2) & 2;
|
yading@10
|
527 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
|
yading@10
|
528 pulse_subset = (fixed_index >> 6) & 2;
|
yading@10
|
529 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
|
yading@10
|
530 fixed_sparse->n = 3;
|
yading@10
|
531 } else { // mode <= MODE_7k95
|
yading@10
|
532 pulse_position[0] = gray_decode[ fixed_index & 7];
|
yading@10
|
533 pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
|
yading@10
|
534 pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
|
yading@10
|
535 pulse_subset = (fixed_index >> 9) & 1;
|
yading@10
|
536 pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
|
yading@10
|
537 fixed_sparse->n = 4;
|
yading@10
|
538 }
|
yading@10
|
539 for (i = 0; i < fixed_sparse->n; i++)
|
yading@10
|
540 fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
|
yading@10
|
541 }
|
yading@10
|
542 }
|
yading@10
|
543
|
yading@10
|
544 /**
|
yading@10
|
545 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
|
yading@10
|
546 *
|
yading@10
|
547 * @param p the context
|
yading@10
|
548 * @param subframe unpacked amr subframe
|
yading@10
|
549 * @param mode mode of the current frame
|
yading@10
|
550 * @param fixed_sparse sparse respresentation of the fixed vector
|
yading@10
|
551 */
|
yading@10
|
552 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
|
yading@10
|
553 AMRFixed *fixed_sparse)
|
yading@10
|
554 {
|
yading@10
|
555 // The spec suggests the current pitch gain is always used, but in other
|
yading@10
|
556 // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
|
yading@10
|
557 // so the codebook gain cannot depend on the quantized pitch gain.
|
yading@10
|
558 if (mode == MODE_12k2)
|
yading@10
|
559 p->beta = FFMIN(p->pitch_gain[4], 1.0);
|
yading@10
|
560
|
yading@10
|
561 fixed_sparse->pitch_lag = p->pitch_lag_int;
|
yading@10
|
562 fixed_sparse->pitch_fac = p->beta;
|
yading@10
|
563
|
yading@10
|
564 // Save pitch sharpening factor for the next subframe
|
yading@10
|
565 // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
|
yading@10
|
566 // the fact that the gains for two subframes are jointly quantized.
|
yading@10
|
567 if (mode != MODE_4k75 || subframe & 1)
|
yading@10
|
568 p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
|
yading@10
|
569 }
|
yading@10
|
570 /// @}
|
yading@10
|
571
|
yading@10
|
572
|
yading@10
|
573 /// @name AMR gain decoding functions
|
yading@10
|
574 /// @{
|
yading@10
|
575
|
yading@10
|
576 /**
|
yading@10
|
577 * fixed gain smoothing
|
yading@10
|
578 * Note that where the spec specifies the "spectrum in the q domain"
|
yading@10
|
579 * in section 6.1.4, in fact frequencies should be used.
|
yading@10
|
580 *
|
yading@10
|
581 * @param p the context
|
yading@10
|
582 * @param lsf LSFs for the current subframe, in the range [0,1]
|
yading@10
|
583 * @param lsf_avg averaged LSFs
|
yading@10
|
584 * @param mode mode of the current frame
|
yading@10
|
585 *
|
yading@10
|
586 * @return fixed gain smoothed
|
yading@10
|
587 */
|
yading@10
|
588 static float fixed_gain_smooth(AMRContext *p , const float *lsf,
|
yading@10
|
589 const float *lsf_avg, const enum Mode mode)
|
yading@10
|
590 {
|
yading@10
|
591 float diff = 0.0;
|
yading@10
|
592 int i;
|
yading@10
|
593
|
yading@10
|
594 for (i = 0; i < LP_FILTER_ORDER; i++)
|
yading@10
|
595 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
|
yading@10
|
596
|
yading@10
|
597 // If diff is large for ten subframes, disable smoothing for a 40-subframe
|
yading@10
|
598 // hangover period.
|
yading@10
|
599 p->diff_count++;
|
yading@10
|
600 if (diff <= 0.65)
|
yading@10
|
601 p->diff_count = 0;
|
yading@10
|
602
|
yading@10
|
603 if (p->diff_count > 10) {
|
yading@10
|
604 p->hang_count = 0;
|
yading@10
|
605 p->diff_count--; // don't let diff_count overflow
|
yading@10
|
606 }
|
yading@10
|
607
|
yading@10
|
608 if (p->hang_count < 40) {
|
yading@10
|
609 p->hang_count++;
|
yading@10
|
610 } else if (mode < MODE_7k4 || mode == MODE_10k2) {
|
yading@10
|
611 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
|
yading@10
|
612 const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
|
yading@10
|
613 p->fixed_gain[2] + p->fixed_gain[3] +
|
yading@10
|
614 p->fixed_gain[4]) * 0.2;
|
yading@10
|
615 return smoothing_factor * p->fixed_gain[4] +
|
yading@10
|
616 (1.0 - smoothing_factor) * fixed_gain_mean;
|
yading@10
|
617 }
|
yading@10
|
618 return p->fixed_gain[4];
|
yading@10
|
619 }
|
yading@10
|
620
|
yading@10
|
621 /**
|
yading@10
|
622 * Decode pitch gain and fixed gain factor (part of section 6.1.3).
|
yading@10
|
623 *
|
yading@10
|
624 * @param p the context
|
yading@10
|
625 * @param amr_subframe unpacked amr subframe
|
yading@10
|
626 * @param mode mode of the current frame
|
yading@10
|
627 * @param subframe current subframe number
|
yading@10
|
628 * @param fixed_gain_factor decoded gain correction factor
|
yading@10
|
629 */
|
yading@10
|
630 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
|
yading@10
|
631 const enum Mode mode, const int subframe,
|
yading@10
|
632 float *fixed_gain_factor)
|
yading@10
|
633 {
|
yading@10
|
634 if (mode == MODE_12k2 || mode == MODE_7k95) {
|
yading@10
|
635 p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
|
yading@10
|
636 * (1.0 / 16384.0);
|
yading@10
|
637 *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
|
yading@10
|
638 * (1.0 / 2048.0);
|
yading@10
|
639 } else {
|
yading@10
|
640 const uint16_t *gains;
|
yading@10
|
641
|
yading@10
|
642 if (mode >= MODE_6k7) {
|
yading@10
|
643 gains = gains_high[amr_subframe->p_gain];
|
yading@10
|
644 } else if (mode >= MODE_5k15) {
|
yading@10
|
645 gains = gains_low [amr_subframe->p_gain];
|
yading@10
|
646 } else {
|
yading@10
|
647 // gain index is only coded in subframes 0,2 for MODE_4k75
|
yading@10
|
648 gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
|
yading@10
|
649 }
|
yading@10
|
650
|
yading@10
|
651 p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
|
yading@10
|
652 *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
|
yading@10
|
653 }
|
yading@10
|
654 }
|
yading@10
|
655
|
yading@10
|
656 /// @}
|
yading@10
|
657
|
yading@10
|
658
|
yading@10
|
659 /// @name AMR preprocessing functions
|
yading@10
|
660 /// @{
|
yading@10
|
661
|
yading@10
|
662 /**
|
yading@10
|
663 * Circularly convolve a sparse fixed vector with a phase dispersion impulse
|
yading@10
|
664 * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
|
yading@10
|
665 *
|
yading@10
|
666 * @param out vector with filter applied
|
yading@10
|
667 * @param in source vector
|
yading@10
|
668 * @param filter phase filter coefficients
|
yading@10
|
669 *
|
yading@10
|
670 * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
|
yading@10
|
671 */
|
yading@10
|
672 static void apply_ir_filter(float *out, const AMRFixed *in,
|
yading@10
|
673 const float *filter)
|
yading@10
|
674 {
|
yading@10
|
675 float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
|
yading@10
|
676 filter2[AMR_SUBFRAME_SIZE];
|
yading@10
|
677 int lag = in->pitch_lag;
|
yading@10
|
678 float fac = in->pitch_fac;
|
yading@10
|
679 int i;
|
yading@10
|
680
|
yading@10
|
681 if (lag < AMR_SUBFRAME_SIZE) {
|
yading@10
|
682 ff_celp_circ_addf(filter1, filter, filter, lag, fac,
|
yading@10
|
683 AMR_SUBFRAME_SIZE);
|
yading@10
|
684
|
yading@10
|
685 if (lag < AMR_SUBFRAME_SIZE >> 1)
|
yading@10
|
686 ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
|
yading@10
|
687 AMR_SUBFRAME_SIZE);
|
yading@10
|
688 }
|
yading@10
|
689
|
yading@10
|
690 memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
|
yading@10
|
691 for (i = 0; i < in->n; i++) {
|
yading@10
|
692 int x = in->x[i];
|
yading@10
|
693 float y = in->y[i];
|
yading@10
|
694 const float *filterp;
|
yading@10
|
695
|
yading@10
|
696 if (x >= AMR_SUBFRAME_SIZE - lag) {
|
yading@10
|
697 filterp = filter;
|
yading@10
|
698 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
|
yading@10
|
699 filterp = filter1;
|
yading@10
|
700 } else
|
yading@10
|
701 filterp = filter2;
|
yading@10
|
702
|
yading@10
|
703 ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
|
yading@10
|
704 }
|
yading@10
|
705 }
|
yading@10
|
706
|
yading@10
|
707 /**
|
yading@10
|
708 * Reduce fixed vector sparseness by smoothing with one of three IR filters.
|
yading@10
|
709 * Also know as "adaptive phase dispersion".
|
yading@10
|
710 *
|
yading@10
|
711 * This implements 3GPP TS 26.090 section 6.1(5).
|
yading@10
|
712 *
|
yading@10
|
713 * @param p the context
|
yading@10
|
714 * @param fixed_sparse algebraic codebook vector
|
yading@10
|
715 * @param fixed_vector unfiltered fixed vector
|
yading@10
|
716 * @param fixed_gain smoothed gain
|
yading@10
|
717 * @param out space for modified vector if necessary
|
yading@10
|
718 */
|
yading@10
|
719 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
|
yading@10
|
720 const float *fixed_vector,
|
yading@10
|
721 float fixed_gain, float *out)
|
yading@10
|
722 {
|
yading@10
|
723 int ir_filter_nr;
|
yading@10
|
724
|
yading@10
|
725 if (p->pitch_gain[4] < 0.6) {
|
yading@10
|
726 ir_filter_nr = 0; // strong filtering
|
yading@10
|
727 } else if (p->pitch_gain[4] < 0.9) {
|
yading@10
|
728 ir_filter_nr = 1; // medium filtering
|
yading@10
|
729 } else
|
yading@10
|
730 ir_filter_nr = 2; // no filtering
|
yading@10
|
731
|
yading@10
|
732 // detect 'onset'
|
yading@10
|
733 if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
|
yading@10
|
734 p->ir_filter_onset = 2;
|
yading@10
|
735 } else if (p->ir_filter_onset)
|
yading@10
|
736 p->ir_filter_onset--;
|
yading@10
|
737
|
yading@10
|
738 if (!p->ir_filter_onset) {
|
yading@10
|
739 int i, count = 0;
|
yading@10
|
740
|
yading@10
|
741 for (i = 0; i < 5; i++)
|
yading@10
|
742 if (p->pitch_gain[i] < 0.6)
|
yading@10
|
743 count++;
|
yading@10
|
744 if (count > 2)
|
yading@10
|
745 ir_filter_nr = 0;
|
yading@10
|
746
|
yading@10
|
747 if (ir_filter_nr > p->prev_ir_filter_nr + 1)
|
yading@10
|
748 ir_filter_nr--;
|
yading@10
|
749 } else if (ir_filter_nr < 2)
|
yading@10
|
750 ir_filter_nr++;
|
yading@10
|
751
|
yading@10
|
752 // Disable filtering for very low level of fixed_gain.
|
yading@10
|
753 // Note this step is not specified in the technical description but is in
|
yading@10
|
754 // the reference source in the function Ph_disp.
|
yading@10
|
755 if (fixed_gain < 5.0)
|
yading@10
|
756 ir_filter_nr = 2;
|
yading@10
|
757
|
yading@10
|
758 if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
|
yading@10
|
759 && ir_filter_nr < 2) {
|
yading@10
|
760 apply_ir_filter(out, fixed_sparse,
|
yading@10
|
761 (p->cur_frame_mode == MODE_7k95 ?
|
yading@10
|
762 ir_filters_lookup_MODE_7k95 :
|
yading@10
|
763 ir_filters_lookup)[ir_filter_nr]);
|
yading@10
|
764 fixed_vector = out;
|
yading@10
|
765 }
|
yading@10
|
766
|
yading@10
|
767 // update ir filter strength history
|
yading@10
|
768 p->prev_ir_filter_nr = ir_filter_nr;
|
yading@10
|
769 p->prev_sparse_fixed_gain = fixed_gain;
|
yading@10
|
770
|
yading@10
|
771 return fixed_vector;
|
yading@10
|
772 }
|
yading@10
|
773
|
yading@10
|
774 /// @}
|
yading@10
|
775
|
yading@10
|
776
|
yading@10
|
777 /// @name AMR synthesis functions
|
yading@10
|
778 /// @{
|
yading@10
|
779
|
yading@10
|
780 /**
|
yading@10
|
781 * Conduct 10th order linear predictive coding synthesis.
|
yading@10
|
782 *
|
yading@10
|
783 * @param p pointer to the AMRContext
|
yading@10
|
784 * @param lpc pointer to the LPC coefficients
|
yading@10
|
785 * @param fixed_gain fixed codebook gain for synthesis
|
yading@10
|
786 * @param fixed_vector algebraic codebook vector
|
yading@10
|
787 * @param samples pointer to the output speech samples
|
yading@10
|
788 * @param overflow 16-bit overflow flag
|
yading@10
|
789 */
|
yading@10
|
790 static int synthesis(AMRContext *p, float *lpc,
|
yading@10
|
791 float fixed_gain, const float *fixed_vector,
|
yading@10
|
792 float *samples, uint8_t overflow)
|
yading@10
|
793 {
|
yading@10
|
794 int i;
|
yading@10
|
795 float excitation[AMR_SUBFRAME_SIZE];
|
yading@10
|
796
|
yading@10
|
797 // if an overflow has been detected, the pitch vector is scaled down by a
|
yading@10
|
798 // factor of 4
|
yading@10
|
799 if (overflow)
|
yading@10
|
800 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
|
yading@10
|
801 p->pitch_vector[i] *= 0.25;
|
yading@10
|
802
|
yading@10
|
803 p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
|
yading@10
|
804 p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
|
yading@10
|
805
|
yading@10
|
806 // emphasize pitch vector contribution
|
yading@10
|
807 if (p->pitch_gain[4] > 0.5 && !overflow) {
|
yading@10
|
808 float energy = p->celpm_ctx.dot_productf(excitation, excitation,
|
yading@10
|
809 AMR_SUBFRAME_SIZE);
|
yading@10
|
810 float pitch_factor =
|
yading@10
|
811 p->pitch_gain[4] *
|
yading@10
|
812 (p->cur_frame_mode == MODE_12k2 ?
|
yading@10
|
813 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
|
yading@10
|
814 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
|
yading@10
|
815
|
yading@10
|
816 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
|
yading@10
|
817 excitation[i] += pitch_factor * p->pitch_vector[i];
|
yading@10
|
818
|
yading@10
|
819 ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
|
yading@10
|
820 AMR_SUBFRAME_SIZE);
|
yading@10
|
821 }
|
yading@10
|
822
|
yading@10
|
823 p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
|
yading@10
|
824 AMR_SUBFRAME_SIZE,
|
yading@10
|
825 LP_FILTER_ORDER);
|
yading@10
|
826
|
yading@10
|
827 // detect overflow
|
yading@10
|
828 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
|
yading@10
|
829 if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
|
yading@10
|
830 return 1;
|
yading@10
|
831 }
|
yading@10
|
832
|
yading@10
|
833 return 0;
|
yading@10
|
834 }
|
yading@10
|
835
|
yading@10
|
836 /// @}
|
yading@10
|
837
|
yading@10
|
838
|
yading@10
|
839 /// @name AMR update functions
|
yading@10
|
840 /// @{
|
yading@10
|
841
|
yading@10
|
842 /**
|
yading@10
|
843 * Update buffers and history at the end of decoding a subframe.
|
yading@10
|
844 *
|
yading@10
|
845 * @param p pointer to the AMRContext
|
yading@10
|
846 */
|
yading@10
|
847 static void update_state(AMRContext *p)
|
yading@10
|
848 {
|
yading@10
|
849 memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
|
yading@10
|
850
|
yading@10
|
851 memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
|
yading@10
|
852 (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
|
yading@10
|
853
|
yading@10
|
854 memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
|
yading@10
|
855 memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
|
yading@10
|
856
|
yading@10
|
857 memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
|
yading@10
|
858 LP_FILTER_ORDER * sizeof(float));
|
yading@10
|
859 }
|
yading@10
|
860
|
yading@10
|
861 /// @}
|
yading@10
|
862
|
yading@10
|
863
|
yading@10
|
864 /// @name AMR Postprocessing functions
|
yading@10
|
865 /// @{
|
yading@10
|
866
|
yading@10
|
867 /**
|
yading@10
|
868 * Get the tilt factor of a formant filter from its transfer function
|
yading@10
|
869 *
|
yading@10
|
870 * @param p The Context
|
yading@10
|
871 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
|
yading@10
|
872 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
|
yading@10
|
873 */
|
yading@10
|
874 static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
|
yading@10
|
875 {
|
yading@10
|
876 float rh0, rh1; // autocorrelation at lag 0 and 1
|
yading@10
|
877
|
yading@10
|
878 // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
|
yading@10
|
879 float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
|
yading@10
|
880 float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
|
yading@10
|
881
|
yading@10
|
882 hf[0] = 1.0;
|
yading@10
|
883 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
|
yading@10
|
884 p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
|
yading@10
|
885 AMR_TILT_RESPONSE,
|
yading@10
|
886 LP_FILTER_ORDER);
|
yading@10
|
887
|
yading@10
|
888 rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
|
yading@10
|
889 rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
|
yading@10
|
890
|
yading@10
|
891 // The spec only specifies this check for 12.2 and 10.2 kbit/s
|
yading@10
|
892 // modes. But in the ref source the tilt is always non-negative.
|
yading@10
|
893 return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
|
yading@10
|
894 }
|
yading@10
|
895
|
yading@10
|
896 /**
|
yading@10
|
897 * Perform adaptive post-filtering to enhance the quality of the speech.
|
yading@10
|
898 * See section 6.2.1.
|
yading@10
|
899 *
|
yading@10
|
900 * @param p pointer to the AMRContext
|
yading@10
|
901 * @param lpc interpolated LP coefficients for this subframe
|
yading@10
|
902 * @param buf_out output of the filter
|
yading@10
|
903 */
|
yading@10
|
904 static void postfilter(AMRContext *p, float *lpc, float *buf_out)
|
yading@10
|
905 {
|
yading@10
|
906 int i;
|
yading@10
|
907 float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
|
yading@10
|
908
|
yading@10
|
909 float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
|
yading@10
|
910 AMR_SUBFRAME_SIZE);
|
yading@10
|
911
|
yading@10
|
912 float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
|
yading@10
|
913 const float *gamma_n, *gamma_d; // Formant filter factor table
|
yading@10
|
914 float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
|
yading@10
|
915
|
yading@10
|
916 if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
|
yading@10
|
917 gamma_n = ff_pow_0_7;
|
yading@10
|
918 gamma_d = ff_pow_0_75;
|
yading@10
|
919 } else {
|
yading@10
|
920 gamma_n = ff_pow_0_55;
|
yading@10
|
921 gamma_d = ff_pow_0_7;
|
yading@10
|
922 }
|
yading@10
|
923
|
yading@10
|
924 for (i = 0; i < LP_FILTER_ORDER; i++) {
|
yading@10
|
925 lpc_n[i] = lpc[i] * gamma_n[i];
|
yading@10
|
926 lpc_d[i] = lpc[i] * gamma_d[i];
|
yading@10
|
927 }
|
yading@10
|
928
|
yading@10
|
929 memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
|
yading@10
|
930 p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
|
yading@10
|
931 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
|
yading@10
|
932 memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
|
yading@10
|
933 sizeof(float) * LP_FILTER_ORDER);
|
yading@10
|
934
|
yading@10
|
935 p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
|
yading@10
|
936 pole_out + LP_FILTER_ORDER,
|
yading@10
|
937 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
|
yading@10
|
938
|
yading@10
|
939 ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
|
yading@10
|
940 AMR_SUBFRAME_SIZE);
|
yading@10
|
941
|
yading@10
|
942 ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
|
yading@10
|
943 AMR_AGC_ALPHA, &p->postfilter_agc);
|
yading@10
|
944 }
|
yading@10
|
945
|
yading@10
|
946 /// @}
|
yading@10
|
947
|
yading@10
|
948 static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
|
yading@10
|
949 int *got_frame_ptr, AVPacket *avpkt)
|
yading@10
|
950 {
|
yading@10
|
951
|
yading@10
|
952 AMRContext *p = avctx->priv_data; // pointer to private data
|
yading@10
|
953 AVFrame *frame = data;
|
yading@10
|
954 const uint8_t *buf = avpkt->data;
|
yading@10
|
955 int buf_size = avpkt->size;
|
yading@10
|
956 float *buf_out; // pointer to the output data buffer
|
yading@10
|
957 int i, subframe, ret;
|
yading@10
|
958 float fixed_gain_factor;
|
yading@10
|
959 AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
|
yading@10
|
960 float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
|
yading@10
|
961 float synth_fixed_gain; // the fixed gain that synthesis should use
|
yading@10
|
962 const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
|
yading@10
|
963
|
yading@10
|
964 /* get output buffer */
|
yading@10
|
965 frame->nb_samples = AMR_BLOCK_SIZE;
|
yading@10
|
966 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
|
yading@10
|
967 return ret;
|
yading@10
|
968 buf_out = (float *)frame->data[0];
|
yading@10
|
969
|
yading@10
|
970 p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
|
yading@10
|
971 if (p->cur_frame_mode == NO_DATA) {
|
yading@10
|
972 av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
|
yading@10
|
973 return AVERROR_INVALIDDATA;
|
yading@10
|
974 }
|
yading@10
|
975 if (p->cur_frame_mode == MODE_DTX) {
|
yading@10
|
976 avpriv_report_missing_feature(avctx, "dtx mode");
|
yading@10
|
977 av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
|
yading@10
|
978 return AVERROR_PATCHWELCOME;
|
yading@10
|
979 }
|
yading@10
|
980
|
yading@10
|
981 if (p->cur_frame_mode == MODE_12k2) {
|
yading@10
|
982 lsf2lsp_5(p);
|
yading@10
|
983 } else
|
yading@10
|
984 lsf2lsp_3(p);
|
yading@10
|
985
|
yading@10
|
986 for (i = 0; i < 4; i++)
|
yading@10
|
987 ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
|
yading@10
|
988
|
yading@10
|
989 for (subframe = 0; subframe < 4; subframe++) {
|
yading@10
|
990 const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
|
yading@10
|
991
|
yading@10
|
992 decode_pitch_vector(p, amr_subframe, subframe);
|
yading@10
|
993
|
yading@10
|
994 decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
|
yading@10
|
995 p->cur_frame_mode, subframe);
|
yading@10
|
996
|
yading@10
|
997 // The fixed gain (section 6.1.3) depends on the fixed vector
|
yading@10
|
998 // (section 6.1.2), but the fixed vector calculation uses
|
yading@10
|
999 // pitch sharpening based on the on the pitch gain (section 6.1.3).
|
yading@10
|
1000 // So the correct order is: pitch gain, pitch sharpening, fixed gain.
|
yading@10
|
1001 decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
|
yading@10
|
1002 &fixed_gain_factor);
|
yading@10
|
1003
|
yading@10
|
1004 pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
|
yading@10
|
1005
|
yading@10
|
1006 if (fixed_sparse.pitch_lag == 0) {
|
yading@10
|
1007 av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
|
yading@10
|
1008 return AVERROR_INVALIDDATA;
|
yading@10
|
1009 }
|
yading@10
|
1010 ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
|
yading@10
|
1011 AMR_SUBFRAME_SIZE);
|
yading@10
|
1012
|
yading@10
|
1013 p->fixed_gain[4] =
|
yading@10
|
1014 ff_amr_set_fixed_gain(fixed_gain_factor,
|
yading@10
|
1015 p->celpm_ctx.dot_productf(p->fixed_vector,
|
yading@10
|
1016 p->fixed_vector,
|
yading@10
|
1017 AMR_SUBFRAME_SIZE) /
|
yading@10
|
1018 AMR_SUBFRAME_SIZE,
|
yading@10
|
1019 p->prediction_error,
|
yading@10
|
1020 energy_mean[p->cur_frame_mode], energy_pred_fac);
|
yading@10
|
1021
|
yading@10
|
1022 // The excitation feedback is calculated without any processing such
|
yading@10
|
1023 // as fixed gain smoothing. This isn't mentioned in the specification.
|
yading@10
|
1024 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
|
yading@10
|
1025 p->excitation[i] *= p->pitch_gain[4];
|
yading@10
|
1026 ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
|
yading@10
|
1027 AMR_SUBFRAME_SIZE);
|
yading@10
|
1028
|
yading@10
|
1029 // In the ref decoder, excitation is stored with no fractional bits.
|
yading@10
|
1030 // This step prevents buzz in silent periods. The ref encoder can
|
yading@10
|
1031 // emit long sequences with pitch factor greater than one. This
|
yading@10
|
1032 // creates unwanted feedback if the excitation vector is nonzero.
|
yading@10
|
1033 // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
|
yading@10
|
1034 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
|
yading@10
|
1035 p->excitation[i] = truncf(p->excitation[i]);
|
yading@10
|
1036
|
yading@10
|
1037 // Smooth fixed gain.
|
yading@10
|
1038 // The specification is ambiguous, but in the reference source, the
|
yading@10
|
1039 // smoothed value is NOT fed back into later fixed gain smoothing.
|
yading@10
|
1040 synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
|
yading@10
|
1041 p->lsf_avg, p->cur_frame_mode);
|
yading@10
|
1042
|
yading@10
|
1043 synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
|
yading@10
|
1044 synth_fixed_gain, spare_vector);
|
yading@10
|
1045
|
yading@10
|
1046 if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
|
yading@10
|
1047 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
|
yading@10
|
1048 // overflow detected -> rerun synthesis scaling pitch vector down
|
yading@10
|
1049 // by a factor of 4, skipping pitch vector contribution emphasis
|
yading@10
|
1050 // and adaptive gain control
|
yading@10
|
1051 synthesis(p, p->lpc[subframe], synth_fixed_gain,
|
yading@10
|
1052 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
|
yading@10
|
1053
|
yading@10
|
1054 postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
|
yading@10
|
1055
|
yading@10
|
1056 // update buffers and history
|
yading@10
|
1057 ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
|
yading@10
|
1058 update_state(p);
|
yading@10
|
1059 }
|
yading@10
|
1060
|
yading@10
|
1061 p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
|
yading@10
|
1062 buf_out, highpass_zeros,
|
yading@10
|
1063 highpass_poles,
|
yading@10
|
1064 highpass_gain * AMR_SAMPLE_SCALE,
|
yading@10
|
1065 p->high_pass_mem, AMR_BLOCK_SIZE);
|
yading@10
|
1066
|
yading@10
|
1067 /* Update averaged lsf vector (used for fixed gain smoothing).
|
yading@10
|
1068 *
|
yading@10
|
1069 * Note that lsf_avg should not incorporate the current frame's LSFs
|
yading@10
|
1070 * for fixed_gain_smooth.
|
yading@10
|
1071 * The specification has an incorrect formula: the reference decoder uses
|
yading@10
|
1072 * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
|
yading@10
|
1073 p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
|
yading@10
|
1074 0.84, 0.16, LP_FILTER_ORDER);
|
yading@10
|
1075
|
yading@10
|
1076 *got_frame_ptr = 1;
|
yading@10
|
1077
|
yading@10
|
1078 /* return the amount of bytes consumed if everything was OK */
|
yading@10
|
1079 return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
|
yading@10
|
1080 }
|
yading@10
|
1081
|
yading@10
|
1082
|
yading@10
|
1083 AVCodec ff_amrnb_decoder = {
|
yading@10
|
1084 .name = "amrnb",
|
yading@10
|
1085 .type = AVMEDIA_TYPE_AUDIO,
|
yading@10
|
1086 .id = AV_CODEC_ID_AMR_NB,
|
yading@10
|
1087 .priv_data_size = sizeof(AMRContext),
|
yading@10
|
1088 .init = amrnb_decode_init,
|
yading@10
|
1089 .decode = amrnb_decode_frame,
|
yading@10
|
1090 .capabilities = CODEC_CAP_DR1,
|
yading@10
|
1091 .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
|
yading@10
|
1092 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
|
yading@10
|
1093 AV_SAMPLE_FMT_NONE },
|
yading@10
|
1094 };
|