annotate ffmpeg/libavcodec/acelp_pitch_delay.h @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * gain code, gain pitch and pitch delay decoding
yading@10 3 *
yading@10 4 * Copyright (c) 2008 Vladimir Voroshilov
yading@10 5 *
yading@10 6 * This file is part of FFmpeg.
yading@10 7 *
yading@10 8 * FFmpeg is free software; you can redistribute it and/or
yading@10 9 * modify it under the terms of the GNU Lesser General Public
yading@10 10 * License as published by the Free Software Foundation; either
yading@10 11 * version 2.1 of the License, or (at your option) any later version.
yading@10 12 *
yading@10 13 * FFmpeg is distributed in the hope that it will be useful,
yading@10 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
yading@10 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
yading@10 16 * Lesser General Public License for more details.
yading@10 17 *
yading@10 18 * You should have received a copy of the GNU Lesser General Public
yading@10 19 * License along with FFmpeg; if not, write to the Free Software
yading@10 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
yading@10 21 */
yading@10 22
yading@10 23 #ifndef AVCODEC_ACELP_PITCH_DELAY_H
yading@10 24 #define AVCODEC_ACELP_PITCH_DELAY_H
yading@10 25
yading@10 26 #include <stdint.h>
yading@10 27 #include "dsputil.h"
yading@10 28
yading@10 29 #define PITCH_DELAY_MIN 20
yading@10 30 #define PITCH_DELAY_MAX 143
yading@10 31
yading@10 32 /**
yading@10 33 * @brief Decode pitch delay of the first subframe encoded by 8 bits with 1/3
yading@10 34 * resolution.
yading@10 35 * @param ac_index adaptive codebook index (8 bits)
yading@10 36 *
yading@10 37 * @return pitch delay in 1/3 units
yading@10 38 *
yading@10 39 * Pitch delay is coded:
yading@10 40 * with 1/3 resolution, 19 < pitch_delay < 85
yading@10 41 * integers only, 85 <= pitch_delay <= 143
yading@10 42 */
yading@10 43 int ff_acelp_decode_8bit_to_1st_delay3(int ac_index);
yading@10 44
yading@10 45 /**
yading@10 46 * @brief Decode pitch delay of the second subframe encoded by 5 or 6 bits
yading@10 47 * with 1/3 precision.
yading@10 48 * @param ac_index adaptive codebook index (5 or 6 bits)
yading@10 49 * @param pitch_delay_min lower bound (integer) of pitch delay interval
yading@10 50 * for second subframe
yading@10 51 *
yading@10 52 * @return pitch delay in 1/3 units
yading@10 53 *
yading@10 54 * Pitch delay is coded:
yading@10 55 * with 1/3 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
yading@10 56 *
yading@10 57 * @remark The routine is used in G.729 @@8k, AMR @@10.2k, AMR @@7.95k,
yading@10 58 * AMR @@7.4k for the second subframe.
yading@10 59 */
yading@10 60 int ff_acelp_decode_5_6_bit_to_2nd_delay3(
yading@10 61 int ac_index,
yading@10 62 int pitch_delay_min);
yading@10 63
yading@10 64 /**
yading@10 65 * @brief Decode pitch delay with 1/3 precision.
yading@10 66 * @param ac_index adaptive codebook index (4 bits)
yading@10 67 * @param pitch_delay_min lower bound (integer) of pitch delay interval for
yading@10 68 * second subframe
yading@10 69 *
yading@10 70 * @return pitch delay in 1/3 units
yading@10 71 *
yading@10 72 * Pitch delay is coded:
yading@10 73 * integers only, -6 < pitch_delay - int(prev_pitch_delay) <= -2
yading@10 74 * with 1/3 resolution, -2 < pitch_delay - int(prev_pitch_delay) < 1
yading@10 75 * integers only, 1 <= pitch_delay - int(prev_pitch_delay) < 5
yading@10 76 *
yading@10 77 * @remark The routine is used in G.729 @@6.4k, AMR @@6.7k, AMR @@5.9k,
yading@10 78 * AMR @@5.15k, AMR @@4.75k for the second subframe.
yading@10 79 */
yading@10 80 int ff_acelp_decode_4bit_to_2nd_delay3(
yading@10 81 int ac_index,
yading@10 82 int pitch_delay_min);
yading@10 83
yading@10 84 /**
yading@10 85 * @brief Decode pitch delay of the first subframe encoded by 9 bits
yading@10 86 * with 1/6 precision.
yading@10 87 * @param ac_index adaptive codebook index (9 bits)
yading@10 88 *
yading@10 89 * @return pitch delay in 1/6 units
yading@10 90 *
yading@10 91 * Pitch delay is coded:
yading@10 92 * with 1/6 resolution, 17 < pitch_delay < 95
yading@10 93 * integers only, 95 <= pitch_delay <= 143
yading@10 94 *
yading@10 95 * @remark The routine is used in AMR @@12.2k for the first and third subframes.
yading@10 96 */
yading@10 97 int ff_acelp_decode_9bit_to_1st_delay6(int ac_index);
yading@10 98
yading@10 99 /**
yading@10 100 * @brief Decode pitch delay of the second subframe encoded by 6 bits
yading@10 101 * with 1/6 precision.
yading@10 102 * @param ac_index adaptive codebook index (6 bits)
yading@10 103 * @param pitch_delay_min lower bound (integer) of pitch delay interval for
yading@10 104 * second subframe
yading@10 105 *
yading@10 106 * @return pitch delay in 1/6 units
yading@10 107 *
yading@10 108 * Pitch delay is coded:
yading@10 109 * with 1/6 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
yading@10 110 *
yading@10 111 * @remark The routine is used in AMR @@12.2k for the second and fourth subframes.
yading@10 112 */
yading@10 113 int ff_acelp_decode_6bit_to_2nd_delay6(
yading@10 114 int ac_index,
yading@10 115 int pitch_delay_min);
yading@10 116
yading@10 117 /**
yading@10 118 * @brief Update past quantized energies
yading@10 119 * @param[in,out] quant_energy past quantized energies (5.10)
yading@10 120 * @param gain_corr_factor gain correction factor
yading@10 121 * @param log2_ma_pred_order log2() of MA prediction order
yading@10 122 * @param erasure frame erasure flag
yading@10 123 *
yading@10 124 * If frame erasure flag is not equal to zero, memory is updated with
yading@10 125 * averaged energy, attenuated by 4dB:
yading@10 126 * max(avg(quant_energy[i])-4, -14), i=0,ma_pred_order
yading@10 127 *
yading@10 128 * In normal mode memory is updated with
yading@10 129 * Er - Ep = 20 * log10(gain_corr_factor)
yading@10 130 *
yading@10 131 * @remark The routine is used in G.729 and AMR (all modes).
yading@10 132 */
yading@10 133 void ff_acelp_update_past_gain(
yading@10 134 int16_t* quant_energy,
yading@10 135 int gain_corr_factor,
yading@10 136 int log2_ma_pred_order,
yading@10 137 int erasure);
yading@10 138
yading@10 139 /**
yading@10 140 * @brief Decode the adaptive codebook gain and add
yading@10 141 * correction (4.1.5 and 3.9.1 of G.729).
yading@10 142 * @param dsp initialized dsputil context
yading@10 143 * @param gain_corr_factor gain correction factor (2.13)
yading@10 144 * @param fc_v fixed-codebook vector (2.13)
yading@10 145 * @param mr_energy mean innovation energy and fixed-point correction (7.13)
yading@10 146 * @param[in,out] quant_energy past quantized energies (5.10)
yading@10 147 * @param subframe_size length of subframe
yading@10 148 *
yading@10 149 * @return quantized fixed-codebook gain (14.1)
yading@10 150 *
yading@10 151 * The routine implements equations 69, 66 and 71 of the G.729 specification (3.9.1)
yading@10 152 *
yading@10 153 * Em - mean innovation energy (dB, constant, depends on decoding algorithm)
yading@10 154 * Ep - mean-removed predicted energy (dB)
yading@10 155 * Er - mean-removed innovation energy (dB)
yading@10 156 * Ei - mean energy of the fixed-codebook contribution (dB)
yading@10 157 * N - subframe_size
yading@10 158 * M - MA (Moving Average) prediction order
yading@10 159 * gc - fixed-codebook gain
yading@10 160 * gc_p - predicted fixed-codebook gain
yading@10 161 *
yading@10 162 * Fixed codebook gain is computed using predicted gain gc_p and
yading@10 163 * correction factor gain_corr_factor as shown below:
yading@10 164 *
yading@10 165 * gc = gc_p * gain_corr_factor
yading@10 166 *
yading@10 167 * The predicted fixed codebook gain gc_p is found by predicting
yading@10 168 * the energy of the fixed-codebook contribution from the energy
yading@10 169 * of previous fixed-codebook contributions.
yading@10 170 *
yading@10 171 * mean = 1/N * sum(i,0,N){ fc_v[i] * fc_v[i] }
yading@10 172 *
yading@10 173 * Ei = 10log(mean)
yading@10 174 *
yading@10 175 * Er = 10log(1/N * gc^2 * mean) - Em = 20log(gc) + Ei - Em
yading@10 176 *
yading@10 177 * Replacing Er with Ep and gc with gc_p we will receive:
yading@10 178 *
yading@10 179 * Ep = 10log(1/N * gc_p^2 * mean) - Em = 20log(gc_p) + Ei - Em
yading@10 180 *
yading@10 181 * and from above:
yading@10 182 *
yading@10 183 * gc_p = 10^((Ep - Ei + Em) / 20)
yading@10 184 *
yading@10 185 * Ep is predicted using past energies and prediction coefficients:
yading@10 186 *
yading@10 187 * Ep = sum(i,0,M){ ma_prediction_coeff[i] * quant_energy[i] }
yading@10 188 *
yading@10 189 * gc_p in fixed-point arithmetic is calculated as following:
yading@10 190 *
yading@10 191 * mean = 1/N * sum(i,0,N){ (fc_v[i] / 2^13) * (fc_v[i] / 2^13) } =
yading@10 192 * = 1/N * sum(i,0,N) { fc_v[i] * fc_v[i] } / 2^26
yading@10 193 *
yading@10 194 * Ei = 10log(mean) = -10log(N) - 10log(2^26) +
yading@10 195 * + 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
yading@10 196 *
yading@10 197 * Ep - Ei + Em = Ep + Em + 10log(N) + 10log(2^26) -
yading@10 198 * - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] }) =
yading@10 199 * = Ep + mr_energy - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
yading@10 200 *
yading@10 201 * gc_p = 10 ^ ((Ep - Ei + Em) / 20) =
yading@10 202 * = 2 ^ (3.3219 * (Ep - Ei + Em) / 20) = 2 ^ (0.166 * (Ep - Ei + Em))
yading@10 203 *
yading@10 204 * where
yading@10 205 *
yading@10 206 * mr_energy = Em + 10log(N) + 10log(2^26)
yading@10 207 *
yading@10 208 * @remark The routine is used in G.729 and AMR (all modes).
yading@10 209 */
yading@10 210 int16_t ff_acelp_decode_gain_code(
yading@10 211 DSPContext *dsp,
yading@10 212 int gain_corr_factor,
yading@10 213 const int16_t* fc_v,
yading@10 214 int mr_energy,
yading@10 215 const int16_t* quant_energy,
yading@10 216 const int16_t* ma_prediction_coeff,
yading@10 217 int subframe_size,
yading@10 218 int max_pred_order);
yading@10 219
yading@10 220 /**
yading@10 221 * Calculate fixed gain (part of section 6.1.3 of AMR spec)
yading@10 222 *
yading@10 223 * @param fixed_gain_factor gain correction factor
yading@10 224 * @param fixed_mean_energy mean decoded algebraic codebook vector energy
yading@10 225 * @param prediction_error vector of the quantified predictor errors of
yading@10 226 * the four previous subframes. It is updated by this function.
yading@10 227 * @param energy_mean desired mean innovation energy
yading@10 228 * @param pred_table table of four moving average coefficients
yading@10 229 */
yading@10 230 float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy,
yading@10 231 float *prediction_error, float energy_mean,
yading@10 232 const float *pred_table);
yading@10 233
yading@10 234
yading@10 235 /**
yading@10 236 * Decode the adaptive codebook index to the integer and fractional parts
yading@10 237 * of the pitch lag for one subframe at 1/3 fractional precision.
yading@10 238 *
yading@10 239 * The choice of pitch lag is described in 3GPP TS 26.090 section 5.6.1.
yading@10 240 *
yading@10 241 * @param lag_int integer part of pitch lag of the current subframe
yading@10 242 * @param lag_frac fractional part of pitch lag of the current subframe
yading@10 243 * @param pitch_index parsed adaptive codebook (pitch) index
yading@10 244 * @param prev_lag_int integer part of pitch lag for the previous subframe
yading@10 245 * @param subframe current subframe number
yading@10 246 * @param third_as_first treat the third frame the same way as the first
yading@10 247 */
yading@10 248 void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index,
yading@10 249 const int prev_lag_int, const int subframe,
yading@10 250 int third_as_first, int resolution);
yading@10 251
yading@10 252 #endif /* AVCODEC_ACELP_PITCH_DELAY_H */