yading@10
|
1 function [y]=harmonicmodel1(x,w,N,t)
|
yading@10
|
2 %initializing values
|
yading@10
|
3 M = length(w); % window size - the longer the more frequency resolution
|
yading@10
|
4 N2 = N/2+1; % positive part of the spectrum
|
yading@10
|
5 Ns= 1024; % FFT size for synthesis (even)
|
yading@10
|
6 H = 256; % analysis/synthesishop size
|
yading@10
|
7 soundlength = length(x); % length of input sound array - samples
|
yading@10
|
8
|
yading@10
|
9 fftbuffer = zeros(N,1); % initialize buffer for FFT
|
yading@10
|
10
|
yading@10
|
11 %Create a loop to step through the sound array x
|
yading@10
|
12 %initializing the loop
|
yading@10
|
13 hNs = Ns/2; % half synthesis window size
|
yading@10
|
14 hM = (M-1)/2; % half analysis window size used to overlap windows
|
yading@10
|
15
|
yading@10
|
16 pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window
|
yading@10
|
17 pend = soundlength-max(H,hM); % last sample to start a frame
|
yading@10
|
18
|
yading@10
|
19 y = zeros(soundlength,1); % initialize output array
|
yading@10
|
20 w = w/sum(w); % normalize analysis window
|
yading@10
|
21 sw = zeros(Ns,1);
|
yading@10
|
22 ow = triang(2*H-1); % overlapping window
|
yading@10
|
23 ovidx = Ns/2+1-hNs+1:Ns/2+H; % overlap indexes
|
yading@10
|
24 sw(ovidx) = ow(1:2*H-1);
|
yading@10
|
25 bh = blackmanharris(Ns); % synthesis window
|
yading@10
|
26 bh = bh ./ sum(bh); % normalize synthesis window
|
yading@10
|
27 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
|
yading@10
|
28
|
yading@10
|
29 while pin<pend
|
yading@10
|
30 xw = x(pin-hM:pin+hM).*w(1:M)'; % window the input sound - STFT definition
|
yading@10
|
31
|
yading@10
|
32 %zero phased window
|
yading@10
|
33 fftbuffer(:) = 0; % reset buffer
|
yading@10
|
34 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase fftbuffer
|
yading@10
|
35 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
|
yading@10
|
36
|
yading@10
|
37 %compute FFT of the zero phased frame
|
yading@10
|
38 X = fft(fftbuffer);
|
yading@10
|
39
|
yading@10
|
40 %calculate magnitude and phase spectrum of of positive frequencies
|
yading@10
|
41 mX = 20*log10(abs(X(1:N2)));
|
yading@10
|
42 pX = unwrap(angle(X(1:N2)));
|
yading@10
|
43
|
yading@10
|
44
|
yading@10
|
45 %Find the locations, ploc, of the local maxima above a given
|
yading@10
|
46 %threshold, t, in each magnitude spectrum by finding changes of slope.
|
yading@10
|
47 ploc = 1+find((mX(2:N2-1)>t).*(mX(2:N2-1)>mX(3:N2)).*(mX(2:N2-1)>mX(1:N2-2)));
|
yading@10
|
48
|
yading@10
|
49 %Find the magnitudes, pmag, and phases, pphase, of the obtained
|
yading@10
|
50 %locations.
|
yading@10
|
51 pmag = mX(ploc);
|
yading@10
|
52 %pmag = mX(ploc)*0.4;
|
yading@10
|
53 pphase = pX(ploc);
|
yading@10
|
54
|
yading@10
|
55
|
yading@10
|
56 %peak interpolation
|
yading@10
|
57 [iploc, ipmag, ipphase] = peakinterp (mX, pX, ploc);
|
yading@10
|
58
|
yading@10
|
59
|
yading@10
|
60 %plot for a window
|
yading@10
|
61 if (pin==1+hM+20*H)
|
yading@10
|
62 figure
|
yading@10
|
63 subplot(2,1,1)
|
yading@10
|
64 plot(mX)
|
yading@10
|
65 hold on
|
yading@10
|
66 plot(iploc,mX(ploc),'*')
|
yading@10
|
67 title('magnitude and peak values');
|
yading@10
|
68 hold off
|
yading@10
|
69 subplot(2,1,2)
|
yading@10
|
70 plot(pX)
|
yading@10
|
71 hold on
|
yading@10
|
72 plot(iploc,pX(ploc),'*')
|
yading@10
|
73 title('phase and peak values');
|
yading@10
|
74 hold off
|
yading@10
|
75
|
yading@10
|
76 %number of peaks
|
yading@10
|
77 npeaksm = length(pmag)
|
yading@10
|
78 npeaksp = length(pphase)
|
yading@10
|
79 end
|
yading@10
|
80
|
yading@10
|
81
|
yading@10
|
82 %-----synthesis-----%
|
yading@10
|
83 plocs = (ploc-1)*Ns/N+1; % adapt peak locations to synthesis FFT
|
yading@10
|
84 Y = genspecsines(plocs,pmag,pphase,Ns); % generate spec sines
|
yading@10
|
85 yw = fftshift(real(ifft(Y))); % time domain of sinusoids
|
yading@10
|
86 y(pin-hNs:pin+hNs-1) = y(pin-hNs:pin+hNs-1)+ sw.*yw(1:Ns); % overlap-add
|
yading@10
|
87 pin = pin+H; % advance the sound pointer
|
yading@10
|
88
|
yading@10
|
89 end
|
yading@10
|
90 end |