katkost@1
|
1 function [y,yh,ys,fr0] = hpsmodel(x,fs,w,N,t,nH,minf0,maxf0,f0et,maxhd,stocf)
|
katkost@1
|
2 %=> analysis/synthesis of a sound using the sinusoidal harmonic model
|
katkost@1
|
3 % x: input sound, fs: sampling rate, w: analysis window (odd size),
|
katkost@1
|
4 % N: FFT size (minimum 512), t: threshold in negative dB,
|
katkost@1
|
5 % nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz,
|
katkost@1
|
6 % maxf0: maximim f0 frequency in Hz,
|
katkost@1
|
7 % f0et: error threshold in the f0 detection (ex: 5),
|
katkost@1
|
8 % maxhd: max. relative deviation in harmonic detection (ex: .2)
|
katkost@1
|
9 % stocf: decimation factor of mag spectrum for stochastic analysis
|
katkost@1
|
10 % y: output sound, yh: harmonic component, ys: stochastic component
|
katkost@1
|
11 M = length(w); % analysis window size
|
katkost@1
|
12 Ns = 1024; % FFT size for synthesis
|
katkost@1
|
13 H = 256; % hop size for analysis and synthesis
|
katkost@1
|
14 N2 = N/2+1; % half-size of spectrum
|
katkost@1
|
15 soundlength = length(x); % length of input sound array
|
katkost@1
|
16 hNs = Ns/2; % half synthesis window size
|
katkost@1
|
17 hM = (M-1)/2; % half analysis window size
|
katkost@1
|
18 pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window
|
katkost@1
|
19 pend = soundlength-max(hM,hNs); % last sample to start a frame
|
katkost@1
|
20 fftbuffer = zeros(N,1); % initialize buffer for FFT
|
katkost@1
|
21 yh = zeros(soundlength+Ns/2,1); % output sine component
|
katkost@1
|
22 ys = zeros(soundlength+Ns/2,1); % output residual component
|
katkost@1
|
23 w = w/sum(w); % normalize analysis window
|
katkost@1
|
24 sw = zeros(Ns,1);
|
katkost@1
|
25 ow = triang(2*H-1); % overlapping window
|
katkost@1
|
26 ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes
|
katkost@1
|
27 sw(ovidx) = ow(1:2*H-1);
|
katkost@1
|
28 bh = blackmanharris(Ns); % synthesis window
|
katkost@1
|
29 bh = bh ./ sum(bh); % normalize synthesis window
|
katkost@1
|
30 wr = bh; % window for residual
|
katkost@1
|
31 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
|
katkost@1
|
32 sws = H*hanning(Ns); % synthesis window for stochastic
|
katkost@1
|
33
|
katkost@1
|
34 i = 0;
|
katkost@1
|
35 while pin<pend
|
katkost@1
|
36 i = i+1;
|
katkost@1
|
37 %-----analysis-----%
|
katkost@1
|
38 xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound
|
katkost@1
|
39 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer
|
katkost@1
|
40 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
|
katkost@1
|
41 X = fft(fftbuffer); % compute the FFT
|
katkost@1
|
42 mX = 20*log10(abs(X(1:N2))); % magnitude spectrum
|
katkost@1
|
43 pX = unwrap(angle(X(1:N/2+1))); % unwrapped phase spectrum
|
katkost@1
|
44 ploc = 1 + find((mX(2:N2-1)>t) .* (mX(2:N2-1)>mX(3:N2)) ...
|
katkost@1
|
45 .* (mX(2:N2-1)>mX(1:N2-2))); % find peaks
|
katkost@1
|
46 [ploc,pmag,pphase] = peakinterp(mX,pX,ploc); % refine peak values
|
katkost@1
|
47 f0 = f0detection(mX,fs,ploc,pmag,f0et,minf0,maxf0); % find f0
|
katkost@1
|
48 fr0(i)=f0;
|
katkost@1
|
49 hloc = zeros(nH,1); % initialize harmonic locations
|
katkost@1
|
50 hmag = zeros(nH,1)-100; % initialize harmonic magnitudes
|
katkost@1
|
51 hphase = zeros(nH,1); % initialize harmonic phases
|
katkost@1
|
52 hf = (f0>0).*(f0.*(1:nH)); % initialize harmonic frequencies
|
katkost@1
|
53 hi = 1; % initialize harmonic index
|
katkost@1
|
54 npeaks = length(ploc); % number of peaks found
|
katkost@1
|
55 while (f0>0 && hi<=nH && hf(hi)<fs/2) % find harmonic peaks
|
katkost@1
|
56 [dev,pei] = min(abs((ploc(1:npeaks)-1)/N*fs-hf(hi))); % closest peak
|
katkost@1
|
57 if ((hi==1 || ~any(hloc(1:hi-1)==ploc(pei))) && dev<maxhd*hf(hi))
|
katkost@1
|
58 hloc(hi) = ploc(pei); % harmonic locations
|
katkost@1
|
59 hmag(hi) = pmag(pei); % harmonic magnitudes
|
katkost@1
|
60 hphase(hi) = pphase(pei); % harmonic phases
|
katkost@1
|
61 end
|
katkost@1
|
62 hi = hi+1; % increase harmonic index
|
katkost@1
|
63 end
|
katkost@1
|
64 hloc(1:hi-1) = (hloc(1:hi-1)~=0).*((hloc(1:hi-1)-1)*Ns/N+1); % synth. locs
|
katkost@1
|
65 ri= pin-hNs; % input sound pointer for residual analysis
|
katkost@1
|
66 xr = x(ri:ri+Ns-1).*wr(1:Ns); % window the input sound
|
katkost@1
|
67 Xr = fft(fftshift(xr)); % compute FFT for residual analysis
|
katkost@1
|
68 Yh = genspecsines(hloc(1:hi-1),hmag,hphase,Ns); % generate sines
|
katkost@1
|
69 Yr = Xr-Yh; % get the residual complex spectrum
|
katkost@1
|
70 mYr = abs(Yr(1:Ns/2+1)); % magnitude spectrum of residual
|
katkost@1
|
71 %mYs = stochenvelope(mYr,stocf);
|
katkost@1
|
72 %-----transformations-----%
|
katkost@1
|
73 mYsenv = decimate(mYr,stocf,1); % decimate the magnitude spectrum
|
katkost@1
|
74 %-----synthesis-----%
|
katkost@1
|
75 mYs = interp(mYsenv,stocf,1); % interpolate to original size
|
katkost@1
|
76
|
katkost@1
|
77 % n=1:N/2+1;
|
katkost@1
|
78 % plot(n/N*Ns,mX); %plotting the original spectrum
|
katkost@1
|
79 % hold on;
|
katkost@1
|
80 % plot(20*log10(abs(mYs)), 'r'); %plotting the approximation done by the decimate function
|
katkost@1
|
81 %
|
katkost@1
|
82 % hold on;
|
katkost@1
|
83 % plot(hloc, hmag, 'g*');
|
katkost@1
|
84 % hold off;
|
katkost@1
|
85 % pause
|
katkost@1
|
86
|
katkost@1
|
87 roffset = ceil(stocf/2)-1; % interpolated array offset
|
katkost@1
|
88 mYs = [ mYs(1)*ones(roffset,1); mYs(1:Ns/2+1-roffset) ];
|
katkost@1
|
89 pYs = 2*pi*rand(Ns/2+1,1); % generate phase random values
|
katkost@1
|
90 mYs1 = [mYs(1:Ns/2+1); mYs(Ns/2:-1:2)]; % create magnitude spectrum
|
katkost@1
|
91 pYs1 = [pYs(1:Ns/2+1); -1*pYs(Ns/2:-1:2)]; % create phase spectrum
|
katkost@1
|
92 Ys = mYs1.*cos(pYs1)+1i*mYs1.*sin(pYs1); % compute complex spectrum
|
katkost@1
|
93 yhw = fftshift(real(ifft(Yh))); % sines in time domain using IFFT
|
katkost@1
|
94 ysw = fftshift(real(ifft(Ys))); % stoc. in time domain using IFFT
|
katkost@1
|
95 yh(ri:ri+Ns-1) = yh(ri:ri+Ns-1)+yhw(1:Ns).*sw; % overlap-add for sines
|
katkost@1
|
96 ys(ri:ri+Ns-1) = ys(ri:ri+Ns-1)+ysw(1:Ns).*sws; % overlap-add for stoch.
|
katkost@1
|
97 pin = pin+H; % advance the sound pointer
|
katkost@1
|
98 end
|
katkost@1
|
99
|
katkost@1
|
100 %ys=tanh(10*ys);
|
katkost@1
|
101 y= yh+ys; % sum sines and stochastic |