yading@10
|
1 /*
|
yading@10
|
2 * Windows Media Audio Voice decoder.
|
yading@10
|
3 * Copyright (c) 2009 Ronald S. Bultje
|
yading@10
|
4 *
|
yading@10
|
5 * This file is part of FFmpeg.
|
yading@10
|
6 *
|
yading@10
|
7 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
8 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
9 * License as published by the Free Software Foundation; either
|
yading@10
|
10 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
11 *
|
yading@10
|
12 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
yading@10
|
15 * Lesser General Public License for more details.
|
yading@10
|
16 *
|
yading@10
|
17 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
18 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
20 */
|
yading@10
|
21
|
yading@10
|
22 /**
|
yading@10
|
23 * @file
|
yading@10
|
24 * @brief Windows Media Audio Voice compatible decoder
|
yading@10
|
25 * @author Ronald S. Bultje <rsbultje@gmail.com>
|
yading@10
|
26 */
|
yading@10
|
27
|
yading@10
|
28 #include <math.h>
|
yading@10
|
29
|
yading@10
|
30 #include "libavutil/channel_layout.h"
|
yading@10
|
31 #include "libavutil/float_dsp.h"
|
yading@10
|
32 #include "libavutil/mem.h"
|
yading@10
|
33 #include "avcodec.h"
|
yading@10
|
34 #include "internal.h"
|
yading@10
|
35 #include "get_bits.h"
|
yading@10
|
36 #include "put_bits.h"
|
yading@10
|
37 #include "wmavoice_data.h"
|
yading@10
|
38 #include "celp_filters.h"
|
yading@10
|
39 #include "acelp_vectors.h"
|
yading@10
|
40 #include "acelp_filters.h"
|
yading@10
|
41 #include "lsp.h"
|
yading@10
|
42 #include "dct.h"
|
yading@10
|
43 #include "rdft.h"
|
yading@10
|
44 #include "sinewin.h"
|
yading@10
|
45
|
yading@10
|
46 #define MAX_BLOCKS 8 ///< maximum number of blocks per frame
|
yading@10
|
47 #define MAX_LSPS 16 ///< maximum filter order
|
yading@10
|
48 #define MAX_LSPS_ALIGN16 16 ///< same as #MAX_LSPS; needs to be multiple
|
yading@10
|
49 ///< of 16 for ASM input buffer alignment
|
yading@10
|
50 #define MAX_FRAMES 3 ///< maximum number of frames per superframe
|
yading@10
|
51 #define MAX_FRAMESIZE 160 ///< maximum number of samples per frame
|
yading@10
|
52 #define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history
|
yading@10
|
53 #define MAX_SFRAMESIZE (MAX_FRAMESIZE * MAX_FRAMES)
|
yading@10
|
54 ///< maximum number of samples per superframe
|
yading@10
|
55 #define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that
|
yading@10
|
56 ///< was split over two packets
|
yading@10
|
57 #define VLC_NBITS 6 ///< number of bits to read per VLC iteration
|
yading@10
|
58
|
yading@10
|
59 /**
|
yading@10
|
60 * Frame type VLC coding.
|
yading@10
|
61 */
|
yading@10
|
62 static VLC frame_type_vlc;
|
yading@10
|
63
|
yading@10
|
64 /**
|
yading@10
|
65 * Adaptive codebook types.
|
yading@10
|
66 */
|
yading@10
|
67 enum {
|
yading@10
|
68 ACB_TYPE_NONE = 0, ///< no adaptive codebook (only hardcoded fixed)
|
yading@10
|
69 ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which
|
yading@10
|
70 ///< we interpolate to get a per-sample pitch.
|
yading@10
|
71 ///< Signal is generated using an asymmetric sinc
|
yading@10
|
72 ///< window function
|
yading@10
|
73 ///< @note see #wmavoice_ipol1_coeffs
|
yading@10
|
74 ACB_TYPE_HAMMING = 2 ///< Per-block pitch with signal generation using
|
yading@10
|
75 ///< a Hamming sinc window function
|
yading@10
|
76 ///< @note see #wmavoice_ipol2_coeffs
|
yading@10
|
77 };
|
yading@10
|
78
|
yading@10
|
79 /**
|
yading@10
|
80 * Fixed codebook types.
|
yading@10
|
81 */
|
yading@10
|
82 enum {
|
yading@10
|
83 FCB_TYPE_SILENCE = 0, ///< comfort noise during silence
|
yading@10
|
84 ///< generated from a hardcoded (fixed) codebook
|
yading@10
|
85 ///< with per-frame (low) gain values
|
yading@10
|
86 FCB_TYPE_HARDCODED = 1, ///< hardcoded (fixed) codebook with per-block
|
yading@10
|
87 ///< gain values
|
yading@10
|
88 FCB_TYPE_AW_PULSES = 2, ///< Pitch-adaptive window (AW) pulse signals,
|
yading@10
|
89 ///< used in particular for low-bitrate streams
|
yading@10
|
90 FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in
|
yading@10
|
91 ///< combinations of either single pulses or
|
yading@10
|
92 ///< pulse pairs
|
yading@10
|
93 };
|
yading@10
|
94
|
yading@10
|
95 /**
|
yading@10
|
96 * Description of frame types.
|
yading@10
|
97 */
|
yading@10
|
98 static const struct frame_type_desc {
|
yading@10
|
99 uint8_t n_blocks; ///< amount of blocks per frame (each block
|
yading@10
|
100 ///< (contains 160/#n_blocks samples)
|
yading@10
|
101 uint8_t log_n_blocks; ///< log2(#n_blocks)
|
yading@10
|
102 uint8_t acb_type; ///< Adaptive codebook type (ACB_TYPE_*)
|
yading@10
|
103 uint8_t fcb_type; ///< Fixed codebook type (FCB_TYPE_*)
|
yading@10
|
104 uint8_t dbl_pulses; ///< how many pulse vectors have pulse pairs
|
yading@10
|
105 ///< (rather than just one single pulse)
|
yading@10
|
106 ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES
|
yading@10
|
107 uint16_t frame_size; ///< the amount of bits that make up the block
|
yading@10
|
108 ///< data (per frame)
|
yading@10
|
109 } frame_descs[17] = {
|
yading@10
|
110 { 1, 0, ACB_TYPE_NONE, FCB_TYPE_SILENCE, 0, 0 },
|
yading@10
|
111 { 2, 1, ACB_TYPE_NONE, FCB_TYPE_HARDCODED, 0, 28 },
|
yading@10
|
112 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES, 0, 46 },
|
yading@10
|
113 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 80 },
|
yading@10
|
114 { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 104 },
|
yading@10
|
115 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0, 108 },
|
yading@10
|
116 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 132 },
|
yading@10
|
117 { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 168 },
|
yading@10
|
118 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 64 },
|
yading@10
|
119 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 80 },
|
yading@10
|
120 { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 104 },
|
yading@10
|
121 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 108 },
|
yading@10
|
122 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 132 },
|
yading@10
|
123 { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 168 },
|
yading@10
|
124 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 176 },
|
yading@10
|
125 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 208 },
|
yading@10
|
126 { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 256 }
|
yading@10
|
127 };
|
yading@10
|
128
|
yading@10
|
129 /**
|
yading@10
|
130 * WMA Voice decoding context.
|
yading@10
|
131 */
|
yading@10
|
132 typedef struct {
|
yading@10
|
133 /**
|
yading@10
|
134 * @name Global values specified in the stream header / extradata or used all over.
|
yading@10
|
135 * @{
|
yading@10
|
136 */
|
yading@10
|
137 GetBitContext gb; ///< packet bitreader. During decoder init,
|
yading@10
|
138 ///< it contains the extradata from the
|
yading@10
|
139 ///< demuxer. During decoding, it contains
|
yading@10
|
140 ///< packet data.
|
yading@10
|
141 int8_t vbm_tree[25]; ///< converts VLC codes to frame type
|
yading@10
|
142
|
yading@10
|
143 int spillover_bitsize; ///< number of bits used to specify
|
yading@10
|
144 ///< #spillover_nbits in the packet header
|
yading@10
|
145 ///< = ceil(log2(ctx->block_align << 3))
|
yading@10
|
146 int history_nsamples; ///< number of samples in history for signal
|
yading@10
|
147 ///< prediction (through ACB)
|
yading@10
|
148
|
yading@10
|
149 /* postfilter specific values */
|
yading@10
|
150 int do_apf; ///< whether to apply the averaged
|
yading@10
|
151 ///< projection filter (APF)
|
yading@10
|
152 int denoise_strength; ///< strength of denoising in Wiener filter
|
yading@10
|
153 ///< [0-11]
|
yading@10
|
154 int denoise_tilt_corr; ///< Whether to apply tilt correction to the
|
yading@10
|
155 ///< Wiener filter coefficients (postfilter)
|
yading@10
|
156 int dc_level; ///< Predicted amount of DC noise, based
|
yading@10
|
157 ///< on which a DC removal filter is used
|
yading@10
|
158
|
yading@10
|
159 int lsps; ///< number of LSPs per frame [10 or 16]
|
yading@10
|
160 int lsp_q_mode; ///< defines quantizer defaults [0, 1]
|
yading@10
|
161 int lsp_def_mode; ///< defines different sets of LSP defaults
|
yading@10
|
162 ///< [0, 1]
|
yading@10
|
163 int frame_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
|
yading@10
|
164 ///< per-frame (independent coding)
|
yading@10
|
165 int sframe_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
|
yading@10
|
166 ///< per superframe (residual coding)
|
yading@10
|
167
|
yading@10
|
168 int min_pitch_val; ///< base value for pitch parsing code
|
yading@10
|
169 int max_pitch_val; ///< max value + 1 for pitch parsing
|
yading@10
|
170 int pitch_nbits; ///< number of bits used to specify the
|
yading@10
|
171 ///< pitch value in the frame header
|
yading@10
|
172 int block_pitch_nbits; ///< number of bits used to specify the
|
yading@10
|
173 ///< first block's pitch value
|
yading@10
|
174 int block_pitch_range; ///< range of the block pitch
|
yading@10
|
175 int block_delta_pitch_nbits; ///< number of bits used to specify the
|
yading@10
|
176 ///< delta pitch between this and the last
|
yading@10
|
177 ///< block's pitch value, used in all but
|
yading@10
|
178 ///< first block
|
yading@10
|
179 int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is
|
yading@10
|
180 ///< from -this to +this-1)
|
yading@10
|
181 uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale
|
yading@10
|
182 ///< conversion
|
yading@10
|
183
|
yading@10
|
184 /**
|
yading@10
|
185 * @}
|
yading@10
|
186 *
|
yading@10
|
187 * @name Packet values specified in the packet header or related to a packet.
|
yading@10
|
188 *
|
yading@10
|
189 * A packet is considered to be a single unit of data provided to this
|
yading@10
|
190 * decoder by the demuxer.
|
yading@10
|
191 * @{
|
yading@10
|
192 */
|
yading@10
|
193 int spillover_nbits; ///< number of bits of the previous packet's
|
yading@10
|
194 ///< last superframe preceding this
|
yading@10
|
195 ///< packet's first full superframe (useful
|
yading@10
|
196 ///< for re-synchronization also)
|
yading@10
|
197 int has_residual_lsps; ///< if set, superframes contain one set of
|
yading@10
|
198 ///< LSPs that cover all frames, encoded as
|
yading@10
|
199 ///< independent and residual LSPs; if not
|
yading@10
|
200 ///< set, each frame contains its own, fully
|
yading@10
|
201 ///< independent, LSPs
|
yading@10
|
202 int skip_bits_next; ///< number of bits to skip at the next call
|
yading@10
|
203 ///< to #wmavoice_decode_packet() (since
|
yading@10
|
204 ///< they're part of the previous superframe)
|
yading@10
|
205
|
yading@10
|
206 uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + FF_INPUT_BUFFER_PADDING_SIZE];
|
yading@10
|
207 ///< cache for superframe data split over
|
yading@10
|
208 ///< multiple packets
|
yading@10
|
209 int sframe_cache_size; ///< set to >0 if we have data from an
|
yading@10
|
210 ///< (incomplete) superframe from a previous
|
yading@10
|
211 ///< packet that spilled over in the current
|
yading@10
|
212 ///< packet; specifies the amount of bits in
|
yading@10
|
213 ///< #sframe_cache
|
yading@10
|
214 PutBitContext pb; ///< bitstream writer for #sframe_cache
|
yading@10
|
215
|
yading@10
|
216 /**
|
yading@10
|
217 * @}
|
yading@10
|
218 *
|
yading@10
|
219 * @name Frame and superframe values
|
yading@10
|
220 * Superframe and frame data - these can change from frame to frame,
|
yading@10
|
221 * although some of them do in that case serve as a cache / history for
|
yading@10
|
222 * the next frame or superframe.
|
yading@10
|
223 * @{
|
yading@10
|
224 */
|
yading@10
|
225 double prev_lsps[MAX_LSPS]; ///< LSPs of the last frame of the previous
|
yading@10
|
226 ///< superframe
|
yading@10
|
227 int last_pitch_val; ///< pitch value of the previous frame
|
yading@10
|
228 int last_acb_type; ///< frame type [0-2] of the previous frame
|
yading@10
|
229 int pitch_diff_sh16; ///< ((cur_pitch_val - #last_pitch_val)
|
yading@10
|
230 ///< << 16) / #MAX_FRAMESIZE
|
yading@10
|
231 float silence_gain; ///< set for use in blocks if #ACB_TYPE_NONE
|
yading@10
|
232
|
yading@10
|
233 int aw_idx_is_ext; ///< whether the AW index was encoded in
|
yading@10
|
234 ///< 8 bits (instead of 6)
|
yading@10
|
235 int aw_pulse_range; ///< the range over which #aw_pulse_set1()
|
yading@10
|
236 ///< can apply the pulse, relative to the
|
yading@10
|
237 ///< value in aw_first_pulse_off. The exact
|
yading@10
|
238 ///< position of the first AW-pulse is within
|
yading@10
|
239 ///< [pulse_off, pulse_off + this], and
|
yading@10
|
240 ///< depends on bitstream values; [16 or 24]
|
yading@10
|
241 int aw_n_pulses[2]; ///< number of AW-pulses in each block; note
|
yading@10
|
242 ///< that this number can be negative (in
|
yading@10
|
243 ///< which case it basically means "zero")
|
yading@10
|
244 int aw_first_pulse_off[2]; ///< index of first sample to which to
|
yading@10
|
245 ///< apply AW-pulses, or -0xff if unset
|
yading@10
|
246 int aw_next_pulse_off_cache; ///< the position (relative to start of the
|
yading@10
|
247 ///< second block) at which pulses should
|
yading@10
|
248 ///< start to be positioned, serves as a
|
yading@10
|
249 ///< cache for pitch-adaptive window pulses
|
yading@10
|
250 ///< between blocks
|
yading@10
|
251
|
yading@10
|
252 int frame_cntr; ///< current frame index [0 - 0xFFFE]; is
|
yading@10
|
253 ///< only used for comfort noise in #pRNG()
|
yading@10
|
254 float gain_pred_err[6]; ///< cache for gain prediction
|
yading@10
|
255 float excitation_history[MAX_SIGNAL_HISTORY];
|
yading@10
|
256 ///< cache of the signal of previous
|
yading@10
|
257 ///< superframes, used as a history for
|
yading@10
|
258 ///< signal generation
|
yading@10
|
259 float synth_history[MAX_LSPS]; ///< see #excitation_history
|
yading@10
|
260 /**
|
yading@10
|
261 * @}
|
yading@10
|
262 *
|
yading@10
|
263 * @name Postfilter values
|
yading@10
|
264 *
|
yading@10
|
265 * Variables used for postfilter implementation, mostly history for
|
yading@10
|
266 * smoothing and so on, and context variables for FFT/iFFT.
|
yading@10
|
267 * @{
|
yading@10
|
268 */
|
yading@10
|
269 RDFTContext rdft, irdft; ///< contexts for FFT-calculation in the
|
yading@10
|
270 ///< postfilter (for denoise filter)
|
yading@10
|
271 DCTContext dct, dst; ///< contexts for phase shift (in Hilbert
|
yading@10
|
272 ///< transform, part of postfilter)
|
yading@10
|
273 float sin[511], cos[511]; ///< 8-bit cosine/sine windows over [-pi,pi]
|
yading@10
|
274 ///< range
|
yading@10
|
275 float postfilter_agc; ///< gain control memory, used in
|
yading@10
|
276 ///< #adaptive_gain_control()
|
yading@10
|
277 float dcf_mem[2]; ///< DC filter history
|
yading@10
|
278 float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE];
|
yading@10
|
279 ///< zero filter output (i.e. excitation)
|
yading@10
|
280 ///< by postfilter
|
yading@10
|
281 float denoise_filter_cache[MAX_FRAMESIZE];
|
yading@10
|
282 int denoise_filter_cache_size; ///< samples in #denoise_filter_cache
|
yading@10
|
283 DECLARE_ALIGNED(32, float, tilted_lpcs_pf)[0x80];
|
yading@10
|
284 ///< aligned buffer for LPC tilting
|
yading@10
|
285 DECLARE_ALIGNED(32, float, denoise_coeffs_pf)[0x80];
|
yading@10
|
286 ///< aligned buffer for denoise coefficients
|
yading@10
|
287 DECLARE_ALIGNED(32, float, synth_filter_out_buf)[0x80 + MAX_LSPS_ALIGN16];
|
yading@10
|
288 ///< aligned buffer for postfilter speech
|
yading@10
|
289 ///< synthesis
|
yading@10
|
290 /**
|
yading@10
|
291 * @}
|
yading@10
|
292 */
|
yading@10
|
293 } WMAVoiceContext;
|
yading@10
|
294
|
yading@10
|
295 /**
|
yading@10
|
296 * Set up the variable bit mode (VBM) tree from container extradata.
|
yading@10
|
297 * @param gb bit I/O context.
|
yading@10
|
298 * The bit context (s->gb) should be loaded with byte 23-46 of the
|
yading@10
|
299 * container extradata (i.e. the ones containing the VBM tree).
|
yading@10
|
300 * @param vbm_tree pointer to array to which the decoded VBM tree will be
|
yading@10
|
301 * written.
|
yading@10
|
302 * @return 0 on success, <0 on error.
|
yading@10
|
303 */
|
yading@10
|
304 static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25])
|
yading@10
|
305 {
|
yading@10
|
306 static const uint8_t bits[] = {
|
yading@10
|
307 2, 2, 2, 4, 4, 4,
|
yading@10
|
308 6, 6, 6, 8, 8, 8,
|
yading@10
|
309 10, 10, 10, 12, 12, 12,
|
yading@10
|
310 14, 14, 14, 14
|
yading@10
|
311 };
|
yading@10
|
312 static const uint16_t codes[] = {
|
yading@10
|
313 0x0000, 0x0001, 0x0002, // 00/01/10
|
yading@10
|
314 0x000c, 0x000d, 0x000e, // 11+00/01/10
|
yading@10
|
315 0x003c, 0x003d, 0x003e, // 1111+00/01/10
|
yading@10
|
316 0x00fc, 0x00fd, 0x00fe, // 111111+00/01/10
|
yading@10
|
317 0x03fc, 0x03fd, 0x03fe, // 11111111+00/01/10
|
yading@10
|
318 0x0ffc, 0x0ffd, 0x0ffe, // 1111111111+00/01/10
|
yading@10
|
319 0x3ffc, 0x3ffd, 0x3ffe, 0x3fff // 111111111111+xx
|
yading@10
|
320 };
|
yading@10
|
321 int cntr[8] = { 0 }, n, res;
|
yading@10
|
322
|
yading@10
|
323 memset(vbm_tree, 0xff, sizeof(vbm_tree[0]) * 25);
|
yading@10
|
324 for (n = 0; n < 17; n++) {
|
yading@10
|
325 res = get_bits(gb, 3);
|
yading@10
|
326 if (cntr[res] > 3) // should be >= 3 + (res == 7))
|
yading@10
|
327 return -1;
|
yading@10
|
328 vbm_tree[res * 3 + cntr[res]++] = n;
|
yading@10
|
329 }
|
yading@10
|
330 INIT_VLC_STATIC(&frame_type_vlc, VLC_NBITS, sizeof(bits),
|
yading@10
|
331 bits, 1, 1, codes, 2, 2, 132);
|
yading@10
|
332 return 0;
|
yading@10
|
333 }
|
yading@10
|
334
|
yading@10
|
335 /**
|
yading@10
|
336 * Set up decoder with parameters from demuxer (extradata etc.).
|
yading@10
|
337 */
|
yading@10
|
338 static av_cold int wmavoice_decode_init(AVCodecContext *ctx)
|
yading@10
|
339 {
|
yading@10
|
340 int n, flags, pitch_range, lsp16_flag;
|
yading@10
|
341 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
342
|
yading@10
|
343 /**
|
yading@10
|
344 * Extradata layout:
|
yading@10
|
345 * - byte 0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c),
|
yading@10
|
346 * - byte 19-22: flags field (annoyingly in LE; see below for known
|
yading@10
|
347 * values),
|
yading@10
|
348 * - byte 23-46: variable bitmode tree (really just 17 * 3 bits,
|
yading@10
|
349 * rest is 0).
|
yading@10
|
350 */
|
yading@10
|
351 if (ctx->extradata_size != 46) {
|
yading@10
|
352 av_log(ctx, AV_LOG_ERROR,
|
yading@10
|
353 "Invalid extradata size %d (should be 46)\n",
|
yading@10
|
354 ctx->extradata_size);
|
yading@10
|
355 return -1;
|
yading@10
|
356 }
|
yading@10
|
357 flags = AV_RL32(ctx->extradata + 18);
|
yading@10
|
358 s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align);
|
yading@10
|
359 s->do_apf = flags & 0x1;
|
yading@10
|
360 if (s->do_apf) {
|
yading@10
|
361 ff_rdft_init(&s->rdft, 7, DFT_R2C);
|
yading@10
|
362 ff_rdft_init(&s->irdft, 7, IDFT_C2R);
|
yading@10
|
363 ff_dct_init(&s->dct, 6, DCT_I);
|
yading@10
|
364 ff_dct_init(&s->dst, 6, DST_I);
|
yading@10
|
365
|
yading@10
|
366 ff_sine_window_init(s->cos, 256);
|
yading@10
|
367 memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0]));
|
yading@10
|
368 for (n = 0; n < 255; n++) {
|
yading@10
|
369 s->sin[n] = -s->sin[510 - n];
|
yading@10
|
370 s->cos[510 - n] = s->cos[n];
|
yading@10
|
371 }
|
yading@10
|
372 }
|
yading@10
|
373 s->denoise_strength = (flags >> 2) & 0xF;
|
yading@10
|
374 if (s->denoise_strength >= 12) {
|
yading@10
|
375 av_log(ctx, AV_LOG_ERROR,
|
yading@10
|
376 "Invalid denoise filter strength %d (max=11)\n",
|
yading@10
|
377 s->denoise_strength);
|
yading@10
|
378 return -1;
|
yading@10
|
379 }
|
yading@10
|
380 s->denoise_tilt_corr = !!(flags & 0x40);
|
yading@10
|
381 s->dc_level = (flags >> 7) & 0xF;
|
yading@10
|
382 s->lsp_q_mode = !!(flags & 0x2000);
|
yading@10
|
383 s->lsp_def_mode = !!(flags & 0x4000);
|
yading@10
|
384 lsp16_flag = flags & 0x1000;
|
yading@10
|
385 if (lsp16_flag) {
|
yading@10
|
386 s->lsps = 16;
|
yading@10
|
387 s->frame_lsp_bitsize = 34;
|
yading@10
|
388 s->sframe_lsp_bitsize = 60;
|
yading@10
|
389 } else {
|
yading@10
|
390 s->lsps = 10;
|
yading@10
|
391 s->frame_lsp_bitsize = 24;
|
yading@10
|
392 s->sframe_lsp_bitsize = 48;
|
yading@10
|
393 }
|
yading@10
|
394 for (n = 0; n < s->lsps; n++)
|
yading@10
|
395 s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
|
yading@10
|
396
|
yading@10
|
397 init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3);
|
yading@10
|
398 if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) {
|
yading@10
|
399 av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n");
|
yading@10
|
400 return -1;
|
yading@10
|
401 }
|
yading@10
|
402
|
yading@10
|
403 s->min_pitch_val = ((ctx->sample_rate << 8) / 400 + 50) >> 8;
|
yading@10
|
404 s->max_pitch_val = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8;
|
yading@10
|
405 pitch_range = s->max_pitch_val - s->min_pitch_val;
|
yading@10
|
406 if (pitch_range <= 0) {
|
yading@10
|
407 av_log(ctx, AV_LOG_ERROR, "Invalid pitch range; broken extradata?\n");
|
yading@10
|
408 return -1;
|
yading@10
|
409 }
|
yading@10
|
410 s->pitch_nbits = av_ceil_log2(pitch_range);
|
yading@10
|
411 s->last_pitch_val = 40;
|
yading@10
|
412 s->last_acb_type = ACB_TYPE_NONE;
|
yading@10
|
413 s->history_nsamples = s->max_pitch_val + 8;
|
yading@10
|
414
|
yading@10
|
415 if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) {
|
yading@10
|
416 int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8,
|
yading@10
|
417 max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8;
|
yading@10
|
418
|
yading@10
|
419 av_log(ctx, AV_LOG_ERROR,
|
yading@10
|
420 "Unsupported samplerate %d (min=%d, max=%d)\n",
|
yading@10
|
421 ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz
|
yading@10
|
422
|
yading@10
|
423 return -1;
|
yading@10
|
424 }
|
yading@10
|
425
|
yading@10
|
426 s->block_conv_table[0] = s->min_pitch_val;
|
yading@10
|
427 s->block_conv_table[1] = (pitch_range * 25) >> 6;
|
yading@10
|
428 s->block_conv_table[2] = (pitch_range * 44) >> 6;
|
yading@10
|
429 s->block_conv_table[3] = s->max_pitch_val - 1;
|
yading@10
|
430 s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF;
|
yading@10
|
431 if (s->block_delta_pitch_hrange <= 0) {
|
yading@10
|
432 av_log(ctx, AV_LOG_ERROR, "Invalid delta pitch hrange; broken extradata?\n");
|
yading@10
|
433 return -1;
|
yading@10
|
434 }
|
yading@10
|
435 s->block_delta_pitch_nbits = 1 + av_ceil_log2(s->block_delta_pitch_hrange);
|
yading@10
|
436 s->block_pitch_range = s->block_conv_table[2] +
|
yading@10
|
437 s->block_conv_table[3] + 1 +
|
yading@10
|
438 2 * (s->block_conv_table[1] - 2 * s->min_pitch_val);
|
yading@10
|
439 s->block_pitch_nbits = av_ceil_log2(s->block_pitch_range);
|
yading@10
|
440
|
yading@10
|
441 ctx->channels = 1;
|
yading@10
|
442 ctx->channel_layout = AV_CH_LAYOUT_MONO;
|
yading@10
|
443 ctx->sample_fmt = AV_SAMPLE_FMT_FLT;
|
yading@10
|
444
|
yading@10
|
445 return 0;
|
yading@10
|
446 }
|
yading@10
|
447
|
yading@10
|
448 /**
|
yading@10
|
449 * @name Postfilter functions
|
yading@10
|
450 * Postfilter functions (gain control, wiener denoise filter, DC filter,
|
yading@10
|
451 * kalman smoothening, plus surrounding code to wrap it)
|
yading@10
|
452 * @{
|
yading@10
|
453 */
|
yading@10
|
454 /**
|
yading@10
|
455 * Adaptive gain control (as used in postfilter).
|
yading@10
|
456 *
|
yading@10
|
457 * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except
|
yading@10
|
458 * that the energy here is calculated using sum(abs(...)), whereas the
|
yading@10
|
459 * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)).
|
yading@10
|
460 *
|
yading@10
|
461 * @param out output buffer for filtered samples
|
yading@10
|
462 * @param in input buffer containing the samples as they are after the
|
yading@10
|
463 * postfilter steps so far
|
yading@10
|
464 * @param speech_synth input buffer containing speech synth before postfilter
|
yading@10
|
465 * @param size input buffer size
|
yading@10
|
466 * @param alpha exponential filter factor
|
yading@10
|
467 * @param gain_mem pointer to filter memory (single float)
|
yading@10
|
468 */
|
yading@10
|
469 static void adaptive_gain_control(float *out, const float *in,
|
yading@10
|
470 const float *speech_synth,
|
yading@10
|
471 int size, float alpha, float *gain_mem)
|
yading@10
|
472 {
|
yading@10
|
473 int i;
|
yading@10
|
474 float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor;
|
yading@10
|
475 float mem = *gain_mem;
|
yading@10
|
476
|
yading@10
|
477 for (i = 0; i < size; i++) {
|
yading@10
|
478 speech_energy += fabsf(speech_synth[i]);
|
yading@10
|
479 postfilter_energy += fabsf(in[i]);
|
yading@10
|
480 }
|
yading@10
|
481 gain_scale_factor = (1.0 - alpha) * speech_energy / postfilter_energy;
|
yading@10
|
482
|
yading@10
|
483 for (i = 0; i < size; i++) {
|
yading@10
|
484 mem = alpha * mem + gain_scale_factor;
|
yading@10
|
485 out[i] = in[i] * mem;
|
yading@10
|
486 }
|
yading@10
|
487
|
yading@10
|
488 *gain_mem = mem;
|
yading@10
|
489 }
|
yading@10
|
490
|
yading@10
|
491 /**
|
yading@10
|
492 * Kalman smoothing function.
|
yading@10
|
493 *
|
yading@10
|
494 * This function looks back pitch +/- 3 samples back into history to find
|
yading@10
|
495 * the best fitting curve (that one giving the optimal gain of the two
|
yading@10
|
496 * signals, i.e. the highest dot product between the two), and then
|
yading@10
|
497 * uses that signal history to smoothen the output of the speech synthesis
|
yading@10
|
498 * filter.
|
yading@10
|
499 *
|
yading@10
|
500 * @param s WMA Voice decoding context
|
yading@10
|
501 * @param pitch pitch of the speech signal
|
yading@10
|
502 * @param in input speech signal
|
yading@10
|
503 * @param out output pointer for smoothened signal
|
yading@10
|
504 * @param size input/output buffer size
|
yading@10
|
505 *
|
yading@10
|
506 * @returns -1 if no smoothening took place, e.g. because no optimal
|
yading@10
|
507 * fit could be found, or 0 on success.
|
yading@10
|
508 */
|
yading@10
|
509 static int kalman_smoothen(WMAVoiceContext *s, int pitch,
|
yading@10
|
510 const float *in, float *out, int size)
|
yading@10
|
511 {
|
yading@10
|
512 int n;
|
yading@10
|
513 float optimal_gain = 0, dot;
|
yading@10
|
514 const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)],
|
yading@10
|
515 *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)],
|
yading@10
|
516 *best_hist_ptr = NULL;
|
yading@10
|
517
|
yading@10
|
518 /* find best fitting point in history */
|
yading@10
|
519 do {
|
yading@10
|
520 dot = avpriv_scalarproduct_float_c(in, ptr, size);
|
yading@10
|
521 if (dot > optimal_gain) {
|
yading@10
|
522 optimal_gain = dot;
|
yading@10
|
523 best_hist_ptr = ptr;
|
yading@10
|
524 }
|
yading@10
|
525 } while (--ptr >= end);
|
yading@10
|
526
|
yading@10
|
527 if (optimal_gain <= 0)
|
yading@10
|
528 return -1;
|
yading@10
|
529 dot = avpriv_scalarproduct_float_c(best_hist_ptr, best_hist_ptr, size);
|
yading@10
|
530 if (dot <= 0) // would be 1.0
|
yading@10
|
531 return -1;
|
yading@10
|
532
|
yading@10
|
533 if (optimal_gain <= dot) {
|
yading@10
|
534 dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000
|
yading@10
|
535 } else
|
yading@10
|
536 dot = 0.625;
|
yading@10
|
537
|
yading@10
|
538 /* actual smoothing */
|
yading@10
|
539 for (n = 0; n < size; n++)
|
yading@10
|
540 out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]);
|
yading@10
|
541
|
yading@10
|
542 return 0;
|
yading@10
|
543 }
|
yading@10
|
544
|
yading@10
|
545 /**
|
yading@10
|
546 * Get the tilt factor of a formant filter from its transfer function
|
yading@10
|
547 * @see #tilt_factor() in amrnbdec.c, which does essentially the same,
|
yading@10
|
548 * but somehow (??) it does a speech synthesis filter in the
|
yading@10
|
549 * middle, which is missing here
|
yading@10
|
550 *
|
yading@10
|
551 * @param lpcs LPC coefficients
|
yading@10
|
552 * @param n_lpcs Size of LPC buffer
|
yading@10
|
553 * @returns the tilt factor
|
yading@10
|
554 */
|
yading@10
|
555 static float tilt_factor(const float *lpcs, int n_lpcs)
|
yading@10
|
556 {
|
yading@10
|
557 float rh0, rh1;
|
yading@10
|
558
|
yading@10
|
559 rh0 = 1.0 + avpriv_scalarproduct_float_c(lpcs, lpcs, n_lpcs);
|
yading@10
|
560 rh1 = lpcs[0] + avpriv_scalarproduct_float_c(lpcs, &lpcs[1], n_lpcs - 1);
|
yading@10
|
561
|
yading@10
|
562 return rh1 / rh0;
|
yading@10
|
563 }
|
yading@10
|
564
|
yading@10
|
565 /**
|
yading@10
|
566 * Derive denoise filter coefficients (in real domain) from the LPCs.
|
yading@10
|
567 */
|
yading@10
|
568 static void calc_input_response(WMAVoiceContext *s, float *lpcs,
|
yading@10
|
569 int fcb_type, float *coeffs, int remainder)
|
yading@10
|
570 {
|
yading@10
|
571 float last_coeff, min = 15.0, max = -15.0;
|
yading@10
|
572 float irange, angle_mul, gain_mul, range, sq;
|
yading@10
|
573 int n, idx;
|
yading@10
|
574
|
yading@10
|
575 /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */
|
yading@10
|
576 s->rdft.rdft_calc(&s->rdft, lpcs);
|
yading@10
|
577 #define log_range(var, assign) do { \
|
yading@10
|
578 float tmp = log10f(assign); var = tmp; \
|
yading@10
|
579 max = FFMAX(max, tmp); min = FFMIN(min, tmp); \
|
yading@10
|
580 } while (0)
|
yading@10
|
581 log_range(last_coeff, lpcs[1] * lpcs[1]);
|
yading@10
|
582 for (n = 1; n < 64; n++)
|
yading@10
|
583 log_range(lpcs[n], lpcs[n * 2] * lpcs[n * 2] +
|
yading@10
|
584 lpcs[n * 2 + 1] * lpcs[n * 2 + 1]);
|
yading@10
|
585 log_range(lpcs[0], lpcs[0] * lpcs[0]);
|
yading@10
|
586 #undef log_range
|
yading@10
|
587 range = max - min;
|
yading@10
|
588 lpcs[64] = last_coeff;
|
yading@10
|
589
|
yading@10
|
590 /* Now, use this spectrum to pick out these frequencies with higher
|
yading@10
|
591 * (relative) power/energy (which we then take to be "not noise"),
|
yading@10
|
592 * and set up a table (still in lpc[]) of (relative) gains per frequency.
|
yading@10
|
593 * These frequencies will be maintained, while others ("noise") will be
|
yading@10
|
594 * decreased in the filter output. */
|
yading@10
|
595 irange = 64.0 / range; // so irange*(max-value) is in the range [0, 63]
|
yading@10
|
596 gain_mul = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) :
|
yading@10
|
597 (5.0 / 14.7));
|
yading@10
|
598 angle_mul = gain_mul * (8.0 * M_LN10 / M_PI);
|
yading@10
|
599 for (n = 0; n <= 64; n++) {
|
yading@10
|
600 float pwr;
|
yading@10
|
601
|
yading@10
|
602 idx = FFMAX(0, lrint((max - lpcs[n]) * irange) - 1);
|
yading@10
|
603 pwr = wmavoice_denoise_power_table[s->denoise_strength][idx];
|
yading@10
|
604 lpcs[n] = angle_mul * pwr;
|
yading@10
|
605
|
yading@10
|
606 /* 70.57 =~ 1/log10(1.0331663) */
|
yading@10
|
607 idx = (pwr * gain_mul - 0.0295) * 70.570526123;
|
yading@10
|
608 if (idx > 127) { // fallback if index falls outside table range
|
yading@10
|
609 coeffs[n] = wmavoice_energy_table[127] *
|
yading@10
|
610 powf(1.0331663, idx - 127);
|
yading@10
|
611 } else
|
yading@10
|
612 coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)];
|
yading@10
|
613 }
|
yading@10
|
614
|
yading@10
|
615 /* calculate the Hilbert transform of the gains, which we do (since this
|
yading@10
|
616 * is a sinus input) by doing a phase shift (in theory, H(sin())=cos()).
|
yading@10
|
617 * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the
|
yading@10
|
618 * "moment" of the LPCs in this filter. */
|
yading@10
|
619 s->dct.dct_calc(&s->dct, lpcs);
|
yading@10
|
620 s->dst.dct_calc(&s->dst, lpcs);
|
yading@10
|
621
|
yading@10
|
622 /* Split out the coefficient indexes into phase/magnitude pairs */
|
yading@10
|
623 idx = 255 + av_clip(lpcs[64], -255, 255);
|
yading@10
|
624 coeffs[0] = coeffs[0] * s->cos[idx];
|
yading@10
|
625 idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255);
|
yading@10
|
626 last_coeff = coeffs[64] * s->cos[idx];
|
yading@10
|
627 for (n = 63;; n--) {
|
yading@10
|
628 idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255);
|
yading@10
|
629 coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
|
yading@10
|
630 coeffs[n * 2] = coeffs[n] * s->cos[idx];
|
yading@10
|
631
|
yading@10
|
632 if (!--n) break;
|
yading@10
|
633
|
yading@10
|
634 idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255);
|
yading@10
|
635 coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
|
yading@10
|
636 coeffs[n * 2] = coeffs[n] * s->cos[idx];
|
yading@10
|
637 }
|
yading@10
|
638 coeffs[1] = last_coeff;
|
yading@10
|
639
|
yading@10
|
640 /* move into real domain */
|
yading@10
|
641 s->irdft.rdft_calc(&s->irdft, coeffs);
|
yading@10
|
642
|
yading@10
|
643 /* tilt correction and normalize scale */
|
yading@10
|
644 memset(&coeffs[remainder], 0, sizeof(coeffs[0]) * (128 - remainder));
|
yading@10
|
645 if (s->denoise_tilt_corr) {
|
yading@10
|
646 float tilt_mem = 0;
|
yading@10
|
647
|
yading@10
|
648 coeffs[remainder - 1] = 0;
|
yading@10
|
649 ff_tilt_compensation(&tilt_mem,
|
yading@10
|
650 -1.8 * tilt_factor(coeffs, remainder - 1),
|
yading@10
|
651 coeffs, remainder);
|
yading@10
|
652 }
|
yading@10
|
653 sq = (1.0 / 64.0) * sqrtf(1 / avpriv_scalarproduct_float_c(coeffs, coeffs,
|
yading@10
|
654 remainder));
|
yading@10
|
655 for (n = 0; n < remainder; n++)
|
yading@10
|
656 coeffs[n] *= sq;
|
yading@10
|
657 }
|
yading@10
|
658
|
yading@10
|
659 /**
|
yading@10
|
660 * This function applies a Wiener filter on the (noisy) speech signal as
|
yading@10
|
661 * a means to denoise it.
|
yading@10
|
662 *
|
yading@10
|
663 * - take RDFT of LPCs to get the power spectrum of the noise + speech;
|
yading@10
|
664 * - using this power spectrum, calculate (for each frequency) the Wiener
|
yading@10
|
665 * filter gain, which depends on the frequency power and desired level
|
yading@10
|
666 * of noise subtraction (when set too high, this leads to artifacts)
|
yading@10
|
667 * We can do this symmetrically over the X-axis (so 0-4kHz is the inverse
|
yading@10
|
668 * of 4-8kHz);
|
yading@10
|
669 * - by doing a phase shift, calculate the Hilbert transform of this array
|
yading@10
|
670 * of per-frequency filter-gains to get the filtering coefficients;
|
yading@10
|
671 * - smoothen/normalize/de-tilt these filter coefficients as desired;
|
yading@10
|
672 * - take RDFT of noisy sound, apply the coefficients and take its IRDFT
|
yading@10
|
673 * to get the denoised speech signal;
|
yading@10
|
674 * - the leftover (i.e. output of the IRDFT on denoised speech data beyond
|
yading@10
|
675 * the frame boundary) are saved and applied to subsequent frames by an
|
yading@10
|
676 * overlap-add method (otherwise you get clicking-artifacts).
|
yading@10
|
677 *
|
yading@10
|
678 * @param s WMA Voice decoding context
|
yading@10
|
679 * @param fcb_type Frame (codebook) type
|
yading@10
|
680 * @param synth_pf input: the noisy speech signal, output: denoised speech
|
yading@10
|
681 * data; should be 16-byte aligned (for ASM purposes)
|
yading@10
|
682 * @param size size of the speech data
|
yading@10
|
683 * @param lpcs LPCs used to synthesize this frame's speech data
|
yading@10
|
684 */
|
yading@10
|
685 static void wiener_denoise(WMAVoiceContext *s, int fcb_type,
|
yading@10
|
686 float *synth_pf, int size,
|
yading@10
|
687 const float *lpcs)
|
yading@10
|
688 {
|
yading@10
|
689 int remainder, lim, n;
|
yading@10
|
690
|
yading@10
|
691 if (fcb_type != FCB_TYPE_SILENCE) {
|
yading@10
|
692 float *tilted_lpcs = s->tilted_lpcs_pf,
|
yading@10
|
693 *coeffs = s->denoise_coeffs_pf, tilt_mem = 0;
|
yading@10
|
694
|
yading@10
|
695 tilted_lpcs[0] = 1.0;
|
yading@10
|
696 memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps);
|
yading@10
|
697 memset(&tilted_lpcs[s->lsps + 1], 0,
|
yading@10
|
698 sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1));
|
yading@10
|
699 ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps),
|
yading@10
|
700 tilted_lpcs, s->lsps + 2);
|
yading@10
|
701
|
yading@10
|
702 /* The IRDFT output (127 samples for 7-bit filter) beyond the frame
|
yading@10
|
703 * size is applied to the next frame. All input beyond this is zero,
|
yading@10
|
704 * and thus all output beyond this will go towards zero, hence we can
|
yading@10
|
705 * limit to min(size-1, 127-size) as a performance consideration. */
|
yading@10
|
706 remainder = FFMIN(127 - size, size - 1);
|
yading@10
|
707 calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder);
|
yading@10
|
708
|
yading@10
|
709 /* apply coefficients (in frequency spectrum domain), i.e. complex
|
yading@10
|
710 * number multiplication */
|
yading@10
|
711 memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size));
|
yading@10
|
712 s->rdft.rdft_calc(&s->rdft, synth_pf);
|
yading@10
|
713 s->rdft.rdft_calc(&s->rdft, coeffs);
|
yading@10
|
714 synth_pf[0] *= coeffs[0];
|
yading@10
|
715 synth_pf[1] *= coeffs[1];
|
yading@10
|
716 for (n = 1; n < 64; n++) {
|
yading@10
|
717 float v1 = synth_pf[n * 2], v2 = synth_pf[n * 2 + 1];
|
yading@10
|
718 synth_pf[n * 2] = v1 * coeffs[n * 2] - v2 * coeffs[n * 2 + 1];
|
yading@10
|
719 synth_pf[n * 2 + 1] = v2 * coeffs[n * 2] + v1 * coeffs[n * 2 + 1];
|
yading@10
|
720 }
|
yading@10
|
721 s->irdft.rdft_calc(&s->irdft, synth_pf);
|
yading@10
|
722 }
|
yading@10
|
723
|
yading@10
|
724 /* merge filter output with the history of previous runs */
|
yading@10
|
725 if (s->denoise_filter_cache_size) {
|
yading@10
|
726 lim = FFMIN(s->denoise_filter_cache_size, size);
|
yading@10
|
727 for (n = 0; n < lim; n++)
|
yading@10
|
728 synth_pf[n] += s->denoise_filter_cache[n];
|
yading@10
|
729 s->denoise_filter_cache_size -= lim;
|
yading@10
|
730 memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size],
|
yading@10
|
731 sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size);
|
yading@10
|
732 }
|
yading@10
|
733
|
yading@10
|
734 /* move remainder of filter output into a cache for future runs */
|
yading@10
|
735 if (fcb_type != FCB_TYPE_SILENCE) {
|
yading@10
|
736 lim = FFMIN(remainder, s->denoise_filter_cache_size);
|
yading@10
|
737 for (n = 0; n < lim; n++)
|
yading@10
|
738 s->denoise_filter_cache[n] += synth_pf[size + n];
|
yading@10
|
739 if (lim < remainder) {
|
yading@10
|
740 memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim],
|
yading@10
|
741 sizeof(s->denoise_filter_cache[0]) * (remainder - lim));
|
yading@10
|
742 s->denoise_filter_cache_size = remainder;
|
yading@10
|
743 }
|
yading@10
|
744 }
|
yading@10
|
745 }
|
yading@10
|
746
|
yading@10
|
747 /**
|
yading@10
|
748 * Averaging projection filter, the postfilter used in WMAVoice.
|
yading@10
|
749 *
|
yading@10
|
750 * This uses the following steps:
|
yading@10
|
751 * - A zero-synthesis filter (generate excitation from synth signal)
|
yading@10
|
752 * - Kalman smoothing on excitation, based on pitch
|
yading@10
|
753 * - Re-synthesized smoothened output
|
yading@10
|
754 * - Iterative Wiener denoise filter
|
yading@10
|
755 * - Adaptive gain filter
|
yading@10
|
756 * - DC filter
|
yading@10
|
757 *
|
yading@10
|
758 * @param s WMAVoice decoding context
|
yading@10
|
759 * @param synth Speech synthesis output (before postfilter)
|
yading@10
|
760 * @param samples Output buffer for filtered samples
|
yading@10
|
761 * @param size Buffer size of synth & samples
|
yading@10
|
762 * @param lpcs Generated LPCs used for speech synthesis
|
yading@10
|
763 * @param zero_exc_pf destination for zero synthesis filter (16-byte aligned)
|
yading@10
|
764 * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses)
|
yading@10
|
765 * @param pitch Pitch of the input signal
|
yading@10
|
766 */
|
yading@10
|
767 static void postfilter(WMAVoiceContext *s, const float *synth,
|
yading@10
|
768 float *samples, int size,
|
yading@10
|
769 const float *lpcs, float *zero_exc_pf,
|
yading@10
|
770 int fcb_type, int pitch)
|
yading@10
|
771 {
|
yading@10
|
772 float synth_filter_in_buf[MAX_FRAMESIZE / 2],
|
yading@10
|
773 *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16],
|
yading@10
|
774 *synth_filter_in = zero_exc_pf;
|
yading@10
|
775
|
yading@10
|
776 av_assert0(size <= MAX_FRAMESIZE / 2);
|
yading@10
|
777
|
yading@10
|
778 /* generate excitation from input signal */
|
yading@10
|
779 ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps);
|
yading@10
|
780
|
yading@10
|
781 if (fcb_type >= FCB_TYPE_AW_PULSES &&
|
yading@10
|
782 !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size))
|
yading@10
|
783 synth_filter_in = synth_filter_in_buf;
|
yading@10
|
784
|
yading@10
|
785 /* re-synthesize speech after smoothening, and keep history */
|
yading@10
|
786 ff_celp_lp_synthesis_filterf(synth_pf, lpcs,
|
yading@10
|
787 synth_filter_in, size, s->lsps);
|
yading@10
|
788 memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps],
|
yading@10
|
789 sizeof(synth_pf[0]) * s->lsps);
|
yading@10
|
790
|
yading@10
|
791 wiener_denoise(s, fcb_type, synth_pf, size, lpcs);
|
yading@10
|
792
|
yading@10
|
793 adaptive_gain_control(samples, synth_pf, synth, size, 0.99,
|
yading@10
|
794 &s->postfilter_agc);
|
yading@10
|
795
|
yading@10
|
796 if (s->dc_level > 8) {
|
yading@10
|
797 /* remove ultra-low frequency DC noise / highpass filter;
|
yading@10
|
798 * coefficients are identical to those used in SIPR decoding,
|
yading@10
|
799 * and very closely resemble those used in AMR-NB decoding. */
|
yading@10
|
800 ff_acelp_apply_order_2_transfer_function(samples, samples,
|
yading@10
|
801 (const float[2]) { -1.99997, 1.0 },
|
yading@10
|
802 (const float[2]) { -1.9330735188, 0.93589198496 },
|
yading@10
|
803 0.93980580475, s->dcf_mem, size);
|
yading@10
|
804 }
|
yading@10
|
805 }
|
yading@10
|
806 /**
|
yading@10
|
807 * @}
|
yading@10
|
808 */
|
yading@10
|
809
|
yading@10
|
810 /**
|
yading@10
|
811 * Dequantize LSPs
|
yading@10
|
812 * @param lsps output pointer to the array that will hold the LSPs
|
yading@10
|
813 * @param num number of LSPs to be dequantized
|
yading@10
|
814 * @param values quantized values, contains n_stages values
|
yading@10
|
815 * @param sizes range (i.e. max value) of each quantized value
|
yading@10
|
816 * @param n_stages number of dequantization runs
|
yading@10
|
817 * @param table dequantization table to be used
|
yading@10
|
818 * @param mul_q LSF multiplier
|
yading@10
|
819 * @param base_q base (lowest) LSF values
|
yading@10
|
820 */
|
yading@10
|
821 static void dequant_lsps(double *lsps, int num,
|
yading@10
|
822 const uint16_t *values,
|
yading@10
|
823 const uint16_t *sizes,
|
yading@10
|
824 int n_stages, const uint8_t *table,
|
yading@10
|
825 const double *mul_q,
|
yading@10
|
826 const double *base_q)
|
yading@10
|
827 {
|
yading@10
|
828 int n, m;
|
yading@10
|
829
|
yading@10
|
830 memset(lsps, 0, num * sizeof(*lsps));
|
yading@10
|
831 for (n = 0; n < n_stages; n++) {
|
yading@10
|
832 const uint8_t *t_off = &table[values[n] * num];
|
yading@10
|
833 double base = base_q[n], mul = mul_q[n];
|
yading@10
|
834
|
yading@10
|
835 for (m = 0; m < num; m++)
|
yading@10
|
836 lsps[m] += base + mul * t_off[m];
|
yading@10
|
837
|
yading@10
|
838 table += sizes[n] * num;
|
yading@10
|
839 }
|
yading@10
|
840 }
|
yading@10
|
841
|
yading@10
|
842 /**
|
yading@10
|
843 * @name LSP dequantization routines
|
yading@10
|
844 * LSP dequantization routines, for 10/16LSPs and independent/residual coding.
|
yading@10
|
845 * @note we assume enough bits are available, caller should check.
|
yading@10
|
846 * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits;
|
yading@10
|
847 * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits.
|
yading@10
|
848 * @{
|
yading@10
|
849 */
|
yading@10
|
850 /**
|
yading@10
|
851 * Parse 10 independently-coded LSPs.
|
yading@10
|
852 */
|
yading@10
|
853 static void dequant_lsp10i(GetBitContext *gb, double *lsps)
|
yading@10
|
854 {
|
yading@10
|
855 static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 };
|
yading@10
|
856 static const double mul_lsf[4] = {
|
yading@10
|
857 5.2187144800e-3, 1.4626986422e-3,
|
yading@10
|
858 9.6179549166e-4, 1.1325736225e-3
|
yading@10
|
859 };
|
yading@10
|
860 static const double base_lsf[4] = {
|
yading@10
|
861 M_PI * -2.15522e-1, M_PI * -6.1646e-2,
|
yading@10
|
862 M_PI * -3.3486e-2, M_PI * -5.7408e-2
|
yading@10
|
863 };
|
yading@10
|
864 uint16_t v[4];
|
yading@10
|
865
|
yading@10
|
866 v[0] = get_bits(gb, 8);
|
yading@10
|
867 v[1] = get_bits(gb, 6);
|
yading@10
|
868 v[2] = get_bits(gb, 5);
|
yading@10
|
869 v[3] = get_bits(gb, 5);
|
yading@10
|
870
|
yading@10
|
871 dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i,
|
yading@10
|
872 mul_lsf, base_lsf);
|
yading@10
|
873 }
|
yading@10
|
874
|
yading@10
|
875 /**
|
yading@10
|
876 * Parse 10 independently-coded LSPs, and then derive the tables to
|
yading@10
|
877 * generate LSPs for the other frames from them (residual coding).
|
yading@10
|
878 */
|
yading@10
|
879 static void dequant_lsp10r(GetBitContext *gb,
|
yading@10
|
880 double *i_lsps, const double *old,
|
yading@10
|
881 double *a1, double *a2, int q_mode)
|
yading@10
|
882 {
|
yading@10
|
883 static const uint16_t vec_sizes[3] = { 128, 64, 64 };
|
yading@10
|
884 static const double mul_lsf[3] = {
|
yading@10
|
885 2.5807601174e-3, 1.2354460219e-3, 1.1763821673e-3
|
yading@10
|
886 };
|
yading@10
|
887 static const double base_lsf[3] = {
|
yading@10
|
888 M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2
|
yading@10
|
889 };
|
yading@10
|
890 const float (*ipol_tab)[2][10] = q_mode ?
|
yading@10
|
891 wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a;
|
yading@10
|
892 uint16_t interpol, v[3];
|
yading@10
|
893 int n;
|
yading@10
|
894
|
yading@10
|
895 dequant_lsp10i(gb, i_lsps);
|
yading@10
|
896
|
yading@10
|
897 interpol = get_bits(gb, 5);
|
yading@10
|
898 v[0] = get_bits(gb, 7);
|
yading@10
|
899 v[1] = get_bits(gb, 6);
|
yading@10
|
900 v[2] = get_bits(gb, 6);
|
yading@10
|
901
|
yading@10
|
902 for (n = 0; n < 10; n++) {
|
yading@10
|
903 double delta = old[n] - i_lsps[n];
|
yading@10
|
904 a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
|
yading@10
|
905 a1[10 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
|
yading@10
|
906 }
|
yading@10
|
907
|
yading@10
|
908 dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r,
|
yading@10
|
909 mul_lsf, base_lsf);
|
yading@10
|
910 }
|
yading@10
|
911
|
yading@10
|
912 /**
|
yading@10
|
913 * Parse 16 independently-coded LSPs.
|
yading@10
|
914 */
|
yading@10
|
915 static void dequant_lsp16i(GetBitContext *gb, double *lsps)
|
yading@10
|
916 {
|
yading@10
|
917 static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 };
|
yading@10
|
918 static const double mul_lsf[5] = {
|
yading@10
|
919 3.3439586280e-3, 6.9908173703e-4,
|
yading@10
|
920 3.3216608306e-3, 1.0334960326e-3,
|
yading@10
|
921 3.1899104283e-3
|
yading@10
|
922 };
|
yading@10
|
923 static const double base_lsf[5] = {
|
yading@10
|
924 M_PI * -1.27576e-1, M_PI * -2.4292e-2,
|
yading@10
|
925 M_PI * -1.28094e-1, M_PI * -3.2128e-2,
|
yading@10
|
926 M_PI * -1.29816e-1
|
yading@10
|
927 };
|
yading@10
|
928 uint16_t v[5];
|
yading@10
|
929
|
yading@10
|
930 v[0] = get_bits(gb, 8);
|
yading@10
|
931 v[1] = get_bits(gb, 6);
|
yading@10
|
932 v[2] = get_bits(gb, 7);
|
yading@10
|
933 v[3] = get_bits(gb, 6);
|
yading@10
|
934 v[4] = get_bits(gb, 7);
|
yading@10
|
935
|
yading@10
|
936 dequant_lsps( lsps, 5, v, vec_sizes, 2,
|
yading@10
|
937 wmavoice_dq_lsp16i1, mul_lsf, base_lsf);
|
yading@10
|
938 dequant_lsps(&lsps[5], 5, &v[2], &vec_sizes[2], 2,
|
yading@10
|
939 wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]);
|
yading@10
|
940 dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1,
|
yading@10
|
941 wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]);
|
yading@10
|
942 }
|
yading@10
|
943
|
yading@10
|
944 /**
|
yading@10
|
945 * Parse 16 independently-coded LSPs, and then derive the tables to
|
yading@10
|
946 * generate LSPs for the other frames from them (residual coding).
|
yading@10
|
947 */
|
yading@10
|
948 static void dequant_lsp16r(GetBitContext *gb,
|
yading@10
|
949 double *i_lsps, const double *old,
|
yading@10
|
950 double *a1, double *a2, int q_mode)
|
yading@10
|
951 {
|
yading@10
|
952 static const uint16_t vec_sizes[3] = { 128, 128, 128 };
|
yading@10
|
953 static const double mul_lsf[3] = {
|
yading@10
|
954 1.2232979501e-3, 1.4062241527e-3, 1.6114744851e-3
|
yading@10
|
955 };
|
yading@10
|
956 static const double base_lsf[3] = {
|
yading@10
|
957 M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2
|
yading@10
|
958 };
|
yading@10
|
959 const float (*ipol_tab)[2][16] = q_mode ?
|
yading@10
|
960 wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a;
|
yading@10
|
961 uint16_t interpol, v[3];
|
yading@10
|
962 int n;
|
yading@10
|
963
|
yading@10
|
964 dequant_lsp16i(gb, i_lsps);
|
yading@10
|
965
|
yading@10
|
966 interpol = get_bits(gb, 5);
|
yading@10
|
967 v[0] = get_bits(gb, 7);
|
yading@10
|
968 v[1] = get_bits(gb, 7);
|
yading@10
|
969 v[2] = get_bits(gb, 7);
|
yading@10
|
970
|
yading@10
|
971 for (n = 0; n < 16; n++) {
|
yading@10
|
972 double delta = old[n] - i_lsps[n];
|
yading@10
|
973 a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
|
yading@10
|
974 a1[16 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
|
yading@10
|
975 }
|
yading@10
|
976
|
yading@10
|
977 dequant_lsps( a2, 10, v, vec_sizes, 1,
|
yading@10
|
978 wmavoice_dq_lsp16r1, mul_lsf, base_lsf);
|
yading@10
|
979 dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1,
|
yading@10
|
980 wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]);
|
yading@10
|
981 dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1,
|
yading@10
|
982 wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]);
|
yading@10
|
983 }
|
yading@10
|
984
|
yading@10
|
985 /**
|
yading@10
|
986 * @}
|
yading@10
|
987 * @name Pitch-adaptive window coding functions
|
yading@10
|
988 * The next few functions are for pitch-adaptive window coding.
|
yading@10
|
989 * @{
|
yading@10
|
990 */
|
yading@10
|
991 /**
|
yading@10
|
992 * Parse the offset of the first pitch-adaptive window pulses, and
|
yading@10
|
993 * the distribution of pulses between the two blocks in this frame.
|
yading@10
|
994 * @param s WMA Voice decoding context private data
|
yading@10
|
995 * @param gb bit I/O context
|
yading@10
|
996 * @param pitch pitch for each block in this frame
|
yading@10
|
997 */
|
yading@10
|
998 static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
999 const int *pitch)
|
yading@10
|
1000 {
|
yading@10
|
1001 static const int16_t start_offset[94] = {
|
yading@10
|
1002 -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11,
|
yading@10
|
1003 13, 15, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26,
|
yading@10
|
1004 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43,
|
yading@10
|
1005 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
|
yading@10
|
1006 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91,
|
yading@10
|
1007 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,
|
yading@10
|
1008 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139,
|
yading@10
|
1009 141, 143, 145, 147, 149, 151, 153, 155, 157, 159
|
yading@10
|
1010 };
|
yading@10
|
1011 int bits, offset;
|
yading@10
|
1012
|
yading@10
|
1013 /* position of pulse */
|
yading@10
|
1014 s->aw_idx_is_ext = 0;
|
yading@10
|
1015 if ((bits = get_bits(gb, 6)) >= 54) {
|
yading@10
|
1016 s->aw_idx_is_ext = 1;
|
yading@10
|
1017 bits += (bits - 54) * 3 + get_bits(gb, 2);
|
yading@10
|
1018 }
|
yading@10
|
1019
|
yading@10
|
1020 /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count
|
yading@10
|
1021 * the distribution of the pulses in each block contained in this frame. */
|
yading@10
|
1022 s->aw_pulse_range = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16;
|
yading@10
|
1023 for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ;
|
yading@10
|
1024 s->aw_n_pulses[0] = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0];
|
yading@10
|
1025 s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2;
|
yading@10
|
1026 offset += s->aw_n_pulses[0] * pitch[0];
|
yading@10
|
1027 s->aw_n_pulses[1] = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1];
|
yading@10
|
1028 s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2;
|
yading@10
|
1029
|
yading@10
|
1030 /* if continuing from a position before the block, reset position to
|
yading@10
|
1031 * start of block (when corrected for the range over which it can be
|
yading@10
|
1032 * spread in aw_pulse_set1()). */
|
yading@10
|
1033 if (start_offset[bits] < MAX_FRAMESIZE / 2) {
|
yading@10
|
1034 while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0)
|
yading@10
|
1035 s->aw_first_pulse_off[1] -= pitch[1];
|
yading@10
|
1036 if (start_offset[bits] < 0)
|
yading@10
|
1037 while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0)
|
yading@10
|
1038 s->aw_first_pulse_off[0] -= pitch[0];
|
yading@10
|
1039 }
|
yading@10
|
1040 }
|
yading@10
|
1041
|
yading@10
|
1042 /**
|
yading@10
|
1043 * Apply second set of pitch-adaptive window pulses.
|
yading@10
|
1044 * @param s WMA Voice decoding context private data
|
yading@10
|
1045 * @param gb bit I/O context
|
yading@10
|
1046 * @param block_idx block index in frame [0, 1]
|
yading@10
|
1047 * @param fcb structure containing fixed codebook vector info
|
yading@10
|
1048 */
|
yading@10
|
1049 static void aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
1050 int block_idx, AMRFixed *fcb)
|
yading@10
|
1051 {
|
yading@10
|
1052 uint16_t use_mask_mem[9]; // only 5 are used, rest is padding
|
yading@10
|
1053 uint16_t *use_mask = use_mask_mem + 2;
|
yading@10
|
1054 /* in this function, idx is the index in the 80-bit (+ padding) use_mask
|
yading@10
|
1055 * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits
|
yading@10
|
1056 * of idx are the position of the bit within a particular item in the
|
yading@10
|
1057 * array (0 being the most significant bit, and 15 being the least
|
yading@10
|
1058 * significant bit), and the remainder (>> 4) is the index in the
|
yading@10
|
1059 * use_mask[]-array. This is faster and uses less memory than using a
|
yading@10
|
1060 * 80-byte/80-int array. */
|
yading@10
|
1061 int pulse_off = s->aw_first_pulse_off[block_idx],
|
yading@10
|
1062 pulse_start, n, idx, range, aidx, start_off = 0;
|
yading@10
|
1063
|
yading@10
|
1064 /* set offset of first pulse to within this block */
|
yading@10
|
1065 if (s->aw_n_pulses[block_idx] > 0)
|
yading@10
|
1066 while (pulse_off + s->aw_pulse_range < 1)
|
yading@10
|
1067 pulse_off += fcb->pitch_lag;
|
yading@10
|
1068
|
yading@10
|
1069 /* find range per pulse */
|
yading@10
|
1070 if (s->aw_n_pulses[0] > 0) {
|
yading@10
|
1071 if (block_idx == 0) {
|
yading@10
|
1072 range = 32;
|
yading@10
|
1073 } else /* block_idx = 1 */ {
|
yading@10
|
1074 range = 8;
|
yading@10
|
1075 if (s->aw_n_pulses[block_idx] > 0)
|
yading@10
|
1076 pulse_off = s->aw_next_pulse_off_cache;
|
yading@10
|
1077 }
|
yading@10
|
1078 } else
|
yading@10
|
1079 range = 16;
|
yading@10
|
1080 pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0;
|
yading@10
|
1081
|
yading@10
|
1082 /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly,
|
yading@10
|
1083 * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus
|
yading@10
|
1084 * we exclude that range from being pulsed again in this function. */
|
yading@10
|
1085 memset(&use_mask[-2], 0, 2 * sizeof(use_mask[0]));
|
yading@10
|
1086 memset( use_mask, -1, 5 * sizeof(use_mask[0]));
|
yading@10
|
1087 memset(&use_mask[5], 0, 2 * sizeof(use_mask[0]));
|
yading@10
|
1088 if (s->aw_n_pulses[block_idx] > 0)
|
yading@10
|
1089 for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) {
|
yading@10
|
1090 int excl_range = s->aw_pulse_range; // always 16 or 24
|
yading@10
|
1091 uint16_t *use_mask_ptr = &use_mask[idx >> 4];
|
yading@10
|
1092 int first_sh = 16 - (idx & 15);
|
yading@10
|
1093 *use_mask_ptr++ &= 0xFFFFu << first_sh;
|
yading@10
|
1094 excl_range -= first_sh;
|
yading@10
|
1095 if (excl_range >= 16) {
|
yading@10
|
1096 *use_mask_ptr++ = 0;
|
yading@10
|
1097 *use_mask_ptr &= 0xFFFF >> (excl_range - 16);
|
yading@10
|
1098 } else
|
yading@10
|
1099 *use_mask_ptr &= 0xFFFF >> excl_range;
|
yading@10
|
1100 }
|
yading@10
|
1101
|
yading@10
|
1102 /* find the 'aidx'th offset that is not excluded */
|
yading@10
|
1103 aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4);
|
yading@10
|
1104 for (n = 0; n <= aidx; pulse_start++) {
|
yading@10
|
1105 for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ;
|
yading@10
|
1106 if (idx >= MAX_FRAMESIZE / 2) { // find from zero
|
yading@10
|
1107 if (use_mask[0]) idx = 0x0F;
|
yading@10
|
1108 else if (use_mask[1]) idx = 0x1F;
|
yading@10
|
1109 else if (use_mask[2]) idx = 0x2F;
|
yading@10
|
1110 else if (use_mask[3]) idx = 0x3F;
|
yading@10
|
1111 else if (use_mask[4]) idx = 0x4F;
|
yading@10
|
1112 else return;
|
yading@10
|
1113 idx -= av_log2_16bit(use_mask[idx >> 4]);
|
yading@10
|
1114 }
|
yading@10
|
1115 if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
|
yading@10
|
1116 use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
|
yading@10
|
1117 n++;
|
yading@10
|
1118 start_off = idx;
|
yading@10
|
1119 }
|
yading@10
|
1120 }
|
yading@10
|
1121
|
yading@10
|
1122 fcb->x[fcb->n] = start_off;
|
yading@10
|
1123 fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0;
|
yading@10
|
1124 fcb->n++;
|
yading@10
|
1125
|
yading@10
|
1126 /* set offset for next block, relative to start of that block */
|
yading@10
|
1127 n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag;
|
yading@10
|
1128 s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0;
|
yading@10
|
1129 }
|
yading@10
|
1130
|
yading@10
|
1131 /**
|
yading@10
|
1132 * Apply first set of pitch-adaptive window pulses.
|
yading@10
|
1133 * @param s WMA Voice decoding context private data
|
yading@10
|
1134 * @param gb bit I/O context
|
yading@10
|
1135 * @param block_idx block index in frame [0, 1]
|
yading@10
|
1136 * @param fcb storage location for fixed codebook pulse info
|
yading@10
|
1137 */
|
yading@10
|
1138 static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
1139 int block_idx, AMRFixed *fcb)
|
yading@10
|
1140 {
|
yading@10
|
1141 int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx));
|
yading@10
|
1142 float v;
|
yading@10
|
1143
|
yading@10
|
1144 if (s->aw_n_pulses[block_idx] > 0) {
|
yading@10
|
1145 int n, v_mask, i_mask, sh, n_pulses;
|
yading@10
|
1146
|
yading@10
|
1147 if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each
|
yading@10
|
1148 n_pulses = 3;
|
yading@10
|
1149 v_mask = 8;
|
yading@10
|
1150 i_mask = 7;
|
yading@10
|
1151 sh = 4;
|
yading@10
|
1152 } else { // 4 pulses, 1:sign + 2:index each
|
yading@10
|
1153 n_pulses = 4;
|
yading@10
|
1154 v_mask = 4;
|
yading@10
|
1155 i_mask = 3;
|
yading@10
|
1156 sh = 3;
|
yading@10
|
1157 }
|
yading@10
|
1158
|
yading@10
|
1159 for (n = n_pulses - 1; n >= 0; n--, val >>= sh) {
|
yading@10
|
1160 fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0;
|
yading@10
|
1161 fcb->x[fcb->n] = (val & i_mask) * n_pulses + n +
|
yading@10
|
1162 s->aw_first_pulse_off[block_idx];
|
yading@10
|
1163 while (fcb->x[fcb->n] < 0)
|
yading@10
|
1164 fcb->x[fcb->n] += fcb->pitch_lag;
|
yading@10
|
1165 if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2)
|
yading@10
|
1166 fcb->n++;
|
yading@10
|
1167 }
|
yading@10
|
1168 } else {
|
yading@10
|
1169 int num2 = (val & 0x1FF) >> 1, delta, idx;
|
yading@10
|
1170
|
yading@10
|
1171 if (num2 < 1 * 79) { delta = 1; idx = num2 + 1; }
|
yading@10
|
1172 else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; }
|
yading@10
|
1173 else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; }
|
yading@10
|
1174 else { delta = 7; idx = num2 + 1 - 3 * 75; }
|
yading@10
|
1175 v = (val & 0x200) ? -1.0 : 1.0;
|
yading@10
|
1176
|
yading@10
|
1177 fcb->no_repeat_mask |= 3 << fcb->n;
|
yading@10
|
1178 fcb->x[fcb->n] = idx - delta;
|
yading@10
|
1179 fcb->y[fcb->n] = v;
|
yading@10
|
1180 fcb->x[fcb->n + 1] = idx;
|
yading@10
|
1181 fcb->y[fcb->n + 1] = (val & 1) ? -v : v;
|
yading@10
|
1182 fcb->n += 2;
|
yading@10
|
1183 }
|
yading@10
|
1184 }
|
yading@10
|
1185
|
yading@10
|
1186 /**
|
yading@10
|
1187 * @}
|
yading@10
|
1188 *
|
yading@10
|
1189 * Generate a random number from frame_cntr and block_idx, which will lief
|
yading@10
|
1190 * in the range [0, 1000 - block_size] (so it can be used as an index in a
|
yading@10
|
1191 * table of size 1000 of which you want to read block_size entries).
|
yading@10
|
1192 *
|
yading@10
|
1193 * @param frame_cntr current frame number
|
yading@10
|
1194 * @param block_num current block index
|
yading@10
|
1195 * @param block_size amount of entries we want to read from a table
|
yading@10
|
1196 * that has 1000 entries
|
yading@10
|
1197 * @return a (non-)random number in the [0, 1000 - block_size] range.
|
yading@10
|
1198 */
|
yading@10
|
1199 static int pRNG(int frame_cntr, int block_num, int block_size)
|
yading@10
|
1200 {
|
yading@10
|
1201 /* array to simplify the calculation of z:
|
yading@10
|
1202 * y = (x % 9) * 5 + 6;
|
yading@10
|
1203 * z = (49995 * x) / y;
|
yading@10
|
1204 * Since y only has 9 values, we can remove the division by using a
|
yading@10
|
1205 * LUT and using FASTDIV-style divisions. For each of the 9 values
|
yading@10
|
1206 * of y, we can rewrite z as:
|
yading@10
|
1207 * z = x * (49995 / y) + x * ((49995 % y) / y)
|
yading@10
|
1208 * In this table, each col represents one possible value of y, the
|
yading@10
|
1209 * first number is 49995 / y, and the second is the FASTDIV variant
|
yading@10
|
1210 * of 49995 % y / y. */
|
yading@10
|
1211 static const unsigned int div_tbl[9][2] = {
|
yading@10
|
1212 { 8332, 3 * 715827883U }, // y = 6
|
yading@10
|
1213 { 4545, 0 * 390451573U }, // y = 11
|
yading@10
|
1214 { 3124, 11 * 268435456U }, // y = 16
|
yading@10
|
1215 { 2380, 15 * 204522253U }, // y = 21
|
yading@10
|
1216 { 1922, 23 * 165191050U }, // y = 26
|
yading@10
|
1217 { 1612, 23 * 138547333U }, // y = 31
|
yading@10
|
1218 { 1388, 27 * 119304648U }, // y = 36
|
yading@10
|
1219 { 1219, 16 * 104755300U }, // y = 41
|
yading@10
|
1220 { 1086, 39 * 93368855U } // y = 46
|
yading@10
|
1221 };
|
yading@10
|
1222 unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr;
|
yading@10
|
1223 if (x >= 0xFFFF) x -= 0xFFFF; // max value of x is 8*1877+0xFFFE=0x13AA6,
|
yading@10
|
1224 // so this is effectively a modulo (%)
|
yading@10
|
1225 y = x - 9 * MULH(477218589, x); // x % 9
|
yading@10
|
1226 z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1]));
|
yading@10
|
1227 // z = x * 49995 / (y * 5 + 6)
|
yading@10
|
1228 return z % (1000 - block_size);
|
yading@10
|
1229 }
|
yading@10
|
1230
|
yading@10
|
1231 /**
|
yading@10
|
1232 * Parse hardcoded signal for a single block.
|
yading@10
|
1233 * @note see #synth_block().
|
yading@10
|
1234 */
|
yading@10
|
1235 static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
1236 int block_idx, int size,
|
yading@10
|
1237 const struct frame_type_desc *frame_desc,
|
yading@10
|
1238 float *excitation)
|
yading@10
|
1239 {
|
yading@10
|
1240 float gain;
|
yading@10
|
1241 int n, r_idx;
|
yading@10
|
1242
|
yading@10
|
1243 av_assert0(size <= MAX_FRAMESIZE);
|
yading@10
|
1244
|
yading@10
|
1245 /* Set the offset from which we start reading wmavoice_std_codebook */
|
yading@10
|
1246 if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
|
yading@10
|
1247 r_idx = pRNG(s->frame_cntr, block_idx, size);
|
yading@10
|
1248 gain = s->silence_gain;
|
yading@10
|
1249 } else /* FCB_TYPE_HARDCODED */ {
|
yading@10
|
1250 r_idx = get_bits(gb, 8);
|
yading@10
|
1251 gain = wmavoice_gain_universal[get_bits(gb, 6)];
|
yading@10
|
1252 }
|
yading@10
|
1253
|
yading@10
|
1254 /* Clear gain prediction parameters */
|
yading@10
|
1255 memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err));
|
yading@10
|
1256
|
yading@10
|
1257 /* Apply gain to hardcoded codebook and use that as excitation signal */
|
yading@10
|
1258 for (n = 0; n < size; n++)
|
yading@10
|
1259 excitation[n] = wmavoice_std_codebook[r_idx + n] * gain;
|
yading@10
|
1260 }
|
yading@10
|
1261
|
yading@10
|
1262 /**
|
yading@10
|
1263 * Parse FCB/ACB signal for a single block.
|
yading@10
|
1264 * @note see #synth_block().
|
yading@10
|
1265 */
|
yading@10
|
1266 static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
1267 int block_idx, int size,
|
yading@10
|
1268 int block_pitch_sh2,
|
yading@10
|
1269 const struct frame_type_desc *frame_desc,
|
yading@10
|
1270 float *excitation)
|
yading@10
|
1271 {
|
yading@10
|
1272 static const float gain_coeff[6] = {
|
yading@10
|
1273 0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458
|
yading@10
|
1274 };
|
yading@10
|
1275 float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain;
|
yading@10
|
1276 int n, idx, gain_weight;
|
yading@10
|
1277 AMRFixed fcb;
|
yading@10
|
1278
|
yading@10
|
1279 av_assert0(size <= MAX_FRAMESIZE / 2);
|
yading@10
|
1280 memset(pulses, 0, sizeof(*pulses) * size);
|
yading@10
|
1281
|
yading@10
|
1282 fcb.pitch_lag = block_pitch_sh2 >> 2;
|
yading@10
|
1283 fcb.pitch_fac = 1.0;
|
yading@10
|
1284 fcb.no_repeat_mask = 0;
|
yading@10
|
1285 fcb.n = 0;
|
yading@10
|
1286
|
yading@10
|
1287 /* For the other frame types, this is where we apply the innovation
|
yading@10
|
1288 * (fixed) codebook pulses of the speech signal. */
|
yading@10
|
1289 if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
yading@10
|
1290 aw_pulse_set1(s, gb, block_idx, &fcb);
|
yading@10
|
1291 aw_pulse_set2(s, gb, block_idx, &fcb);
|
yading@10
|
1292 } else /* FCB_TYPE_EXC_PULSES */ {
|
yading@10
|
1293 int offset_nbits = 5 - frame_desc->log_n_blocks;
|
yading@10
|
1294
|
yading@10
|
1295 fcb.no_repeat_mask = -1;
|
yading@10
|
1296 /* similar to ff_decode_10_pulses_35bits(), but with single pulses
|
yading@10
|
1297 * (instead of double) for a subset of pulses */
|
yading@10
|
1298 for (n = 0; n < 5; n++) {
|
yading@10
|
1299 float sign;
|
yading@10
|
1300 int pos1, pos2;
|
yading@10
|
1301
|
yading@10
|
1302 sign = get_bits1(gb) ? 1.0 : -1.0;
|
yading@10
|
1303 pos1 = get_bits(gb, offset_nbits);
|
yading@10
|
1304 fcb.x[fcb.n] = n + 5 * pos1;
|
yading@10
|
1305 fcb.y[fcb.n++] = sign;
|
yading@10
|
1306 if (n < frame_desc->dbl_pulses) {
|
yading@10
|
1307 pos2 = get_bits(gb, offset_nbits);
|
yading@10
|
1308 fcb.x[fcb.n] = n + 5 * pos2;
|
yading@10
|
1309 fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign;
|
yading@10
|
1310 }
|
yading@10
|
1311 }
|
yading@10
|
1312 }
|
yading@10
|
1313 ff_set_fixed_vector(pulses, &fcb, 1.0, size);
|
yading@10
|
1314
|
yading@10
|
1315 /* Calculate gain for adaptive & fixed codebook signal.
|
yading@10
|
1316 * see ff_amr_set_fixed_gain(). */
|
yading@10
|
1317 idx = get_bits(gb, 7);
|
yading@10
|
1318 fcb_gain = expf(avpriv_scalarproduct_float_c(s->gain_pred_err,
|
yading@10
|
1319 gain_coeff, 6) -
|
yading@10
|
1320 5.2409161640 + wmavoice_gain_codebook_fcb[idx]);
|
yading@10
|
1321 acb_gain = wmavoice_gain_codebook_acb[idx];
|
yading@10
|
1322 pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx],
|
yading@10
|
1323 -2.9957322736 /* log(0.05) */,
|
yading@10
|
1324 1.6094379124 /* log(5.0) */);
|
yading@10
|
1325
|
yading@10
|
1326 gain_weight = 8 >> frame_desc->log_n_blocks;
|
yading@10
|
1327 memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err,
|
yading@10
|
1328 sizeof(*s->gain_pred_err) * (6 - gain_weight));
|
yading@10
|
1329 for (n = 0; n < gain_weight; n++)
|
yading@10
|
1330 s->gain_pred_err[n] = pred_err;
|
yading@10
|
1331
|
yading@10
|
1332 /* Calculation of adaptive codebook */
|
yading@10
|
1333 if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
|
yading@10
|
1334 int len;
|
yading@10
|
1335 for (n = 0; n < size; n += len) {
|
yading@10
|
1336 int next_idx_sh16;
|
yading@10
|
1337 int abs_idx = block_idx * size + n;
|
yading@10
|
1338 int pitch_sh16 = (s->last_pitch_val << 16) +
|
yading@10
|
1339 s->pitch_diff_sh16 * abs_idx;
|
yading@10
|
1340 int pitch = (pitch_sh16 + 0x6FFF) >> 16;
|
yading@10
|
1341 int idx_sh16 = ((pitch << 16) - pitch_sh16) * 8 + 0x58000;
|
yading@10
|
1342 idx = idx_sh16 >> 16;
|
yading@10
|
1343 if (s->pitch_diff_sh16) {
|
yading@10
|
1344 if (s->pitch_diff_sh16 > 0) {
|
yading@10
|
1345 next_idx_sh16 = (idx_sh16) &~ 0xFFFF;
|
yading@10
|
1346 } else
|
yading@10
|
1347 next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF;
|
yading@10
|
1348 len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8,
|
yading@10
|
1349 1, size - n);
|
yading@10
|
1350 } else
|
yading@10
|
1351 len = size;
|
yading@10
|
1352
|
yading@10
|
1353 ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch],
|
yading@10
|
1354 wmavoice_ipol1_coeffs, 17,
|
yading@10
|
1355 idx, 9, len);
|
yading@10
|
1356 }
|
yading@10
|
1357 } else /* ACB_TYPE_HAMMING */ {
|
yading@10
|
1358 int block_pitch = block_pitch_sh2 >> 2;
|
yading@10
|
1359 idx = block_pitch_sh2 & 3;
|
yading@10
|
1360 if (idx) {
|
yading@10
|
1361 ff_acelp_interpolatef(excitation, &excitation[-block_pitch],
|
yading@10
|
1362 wmavoice_ipol2_coeffs, 4,
|
yading@10
|
1363 idx, 8, size);
|
yading@10
|
1364 } else
|
yading@10
|
1365 av_memcpy_backptr((uint8_t *) excitation, sizeof(float) * block_pitch,
|
yading@10
|
1366 sizeof(float) * size);
|
yading@10
|
1367 }
|
yading@10
|
1368
|
yading@10
|
1369 /* Interpolate ACB/FCB and use as excitation signal */
|
yading@10
|
1370 ff_weighted_vector_sumf(excitation, excitation, pulses,
|
yading@10
|
1371 acb_gain, fcb_gain, size);
|
yading@10
|
1372 }
|
yading@10
|
1373
|
yading@10
|
1374 /**
|
yading@10
|
1375 * Parse data in a single block.
|
yading@10
|
1376 * @note we assume enough bits are available, caller should check.
|
yading@10
|
1377 *
|
yading@10
|
1378 * @param s WMA Voice decoding context private data
|
yading@10
|
1379 * @param gb bit I/O context
|
yading@10
|
1380 * @param block_idx index of the to-be-read block
|
yading@10
|
1381 * @param size amount of samples to be read in this block
|
yading@10
|
1382 * @param block_pitch_sh2 pitch for this block << 2
|
yading@10
|
1383 * @param lsps LSPs for (the end of) this frame
|
yading@10
|
1384 * @param prev_lsps LSPs for the last frame
|
yading@10
|
1385 * @param frame_desc frame type descriptor
|
yading@10
|
1386 * @param excitation target memory for the ACB+FCB interpolated signal
|
yading@10
|
1387 * @param synth target memory for the speech synthesis filter output
|
yading@10
|
1388 * @return 0 on success, <0 on error.
|
yading@10
|
1389 */
|
yading@10
|
1390 static void synth_block(WMAVoiceContext *s, GetBitContext *gb,
|
yading@10
|
1391 int block_idx, int size,
|
yading@10
|
1392 int block_pitch_sh2,
|
yading@10
|
1393 const double *lsps, const double *prev_lsps,
|
yading@10
|
1394 const struct frame_type_desc *frame_desc,
|
yading@10
|
1395 float *excitation, float *synth)
|
yading@10
|
1396 {
|
yading@10
|
1397 double i_lsps[MAX_LSPS];
|
yading@10
|
1398 float lpcs[MAX_LSPS];
|
yading@10
|
1399 float fac;
|
yading@10
|
1400 int n;
|
yading@10
|
1401
|
yading@10
|
1402 if (frame_desc->acb_type == ACB_TYPE_NONE)
|
yading@10
|
1403 synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation);
|
yading@10
|
1404 else
|
yading@10
|
1405 synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2,
|
yading@10
|
1406 frame_desc, excitation);
|
yading@10
|
1407
|
yading@10
|
1408 /* convert interpolated LSPs to LPCs */
|
yading@10
|
1409 fac = (block_idx + 0.5) / frame_desc->n_blocks;
|
yading@10
|
1410 for (n = 0; n < s->lsps; n++) // LSF -> LSP
|
yading@10
|
1411 i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n]));
|
yading@10
|
1412 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
|
yading@10
|
1413
|
yading@10
|
1414 /* Speech synthesis */
|
yading@10
|
1415 ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps);
|
yading@10
|
1416 }
|
yading@10
|
1417
|
yading@10
|
1418 /**
|
yading@10
|
1419 * Synthesize output samples for a single frame.
|
yading@10
|
1420 * @note we assume enough bits are available, caller should check.
|
yading@10
|
1421 *
|
yading@10
|
1422 * @param ctx WMA Voice decoder context
|
yading@10
|
1423 * @param gb bit I/O context (s->gb or one for cross-packet superframes)
|
yading@10
|
1424 * @param frame_idx Frame number within superframe [0-2]
|
yading@10
|
1425 * @param samples pointer to output sample buffer, has space for at least 160
|
yading@10
|
1426 * samples
|
yading@10
|
1427 * @param lsps LSP array
|
yading@10
|
1428 * @param prev_lsps array of previous frame's LSPs
|
yading@10
|
1429 * @param excitation target buffer for excitation signal
|
yading@10
|
1430 * @param synth target buffer for synthesized speech data
|
yading@10
|
1431 * @return 0 on success, <0 on error.
|
yading@10
|
1432 */
|
yading@10
|
1433 static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx,
|
yading@10
|
1434 float *samples,
|
yading@10
|
1435 const double *lsps, const double *prev_lsps,
|
yading@10
|
1436 float *excitation, float *synth)
|
yading@10
|
1437 {
|
yading@10
|
1438 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
1439 int n, n_blocks_x2, log_n_blocks_x2, av_uninit(cur_pitch_val);
|
yading@10
|
1440 int pitch[MAX_BLOCKS], av_uninit(last_block_pitch);
|
yading@10
|
1441
|
yading@10
|
1442 /* Parse frame type ("frame header"), see frame_descs */
|
yading@10
|
1443 int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)], block_nsamples;
|
yading@10
|
1444
|
yading@10
|
1445 if (bd_idx < 0) {
|
yading@10
|
1446 av_log(ctx, AV_LOG_ERROR,
|
yading@10
|
1447 "Invalid frame type VLC code, skipping\n");
|
yading@10
|
1448 return -1;
|
yading@10
|
1449 }
|
yading@10
|
1450
|
yading@10
|
1451 block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks;
|
yading@10
|
1452
|
yading@10
|
1453 /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */
|
yading@10
|
1454 if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) {
|
yading@10
|
1455 /* Pitch is provided per frame, which is interpreted as the pitch of
|
yading@10
|
1456 * the last sample of the last block of this frame. We can interpolate
|
yading@10
|
1457 * the pitch of other blocks (and even pitch-per-sample) by gradually
|
yading@10
|
1458 * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */
|
yading@10
|
1459 n_blocks_x2 = frame_descs[bd_idx].n_blocks << 1;
|
yading@10
|
1460 log_n_blocks_x2 = frame_descs[bd_idx].log_n_blocks + 1;
|
yading@10
|
1461 cur_pitch_val = s->min_pitch_val + get_bits(gb, s->pitch_nbits);
|
yading@10
|
1462 cur_pitch_val = FFMIN(cur_pitch_val, s->max_pitch_val - 1);
|
yading@10
|
1463 if (s->last_acb_type == ACB_TYPE_NONE ||
|
yading@10
|
1464 20 * abs(cur_pitch_val - s->last_pitch_val) >
|
yading@10
|
1465 (cur_pitch_val + s->last_pitch_val))
|
yading@10
|
1466 s->last_pitch_val = cur_pitch_val;
|
yading@10
|
1467
|
yading@10
|
1468 /* pitch per block */
|
yading@10
|
1469 for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
|
yading@10
|
1470 int fac = n * 2 + 1;
|
yading@10
|
1471
|
yading@10
|
1472 pitch[n] = (MUL16(fac, cur_pitch_val) +
|
yading@10
|
1473 MUL16((n_blocks_x2 - fac), s->last_pitch_val) +
|
yading@10
|
1474 frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2;
|
yading@10
|
1475 }
|
yading@10
|
1476
|
yading@10
|
1477 /* "pitch-diff-per-sample" for calculation of pitch per sample */
|
yading@10
|
1478 s->pitch_diff_sh16 =
|
yading@10
|
1479 ((cur_pitch_val - s->last_pitch_val) << 16) / MAX_FRAMESIZE;
|
yading@10
|
1480 }
|
yading@10
|
1481
|
yading@10
|
1482 /* Global gain (if silence) and pitch-adaptive window coordinates */
|
yading@10
|
1483 switch (frame_descs[bd_idx].fcb_type) {
|
yading@10
|
1484 case FCB_TYPE_SILENCE:
|
yading@10
|
1485 s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)];
|
yading@10
|
1486 break;
|
yading@10
|
1487 case FCB_TYPE_AW_PULSES:
|
yading@10
|
1488 aw_parse_coords(s, gb, pitch);
|
yading@10
|
1489 break;
|
yading@10
|
1490 }
|
yading@10
|
1491
|
yading@10
|
1492 for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
|
yading@10
|
1493 int bl_pitch_sh2;
|
yading@10
|
1494
|
yading@10
|
1495 /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */
|
yading@10
|
1496 switch (frame_descs[bd_idx].acb_type) {
|
yading@10
|
1497 case ACB_TYPE_HAMMING: {
|
yading@10
|
1498 /* Pitch is given per block. Per-block pitches are encoded as an
|
yading@10
|
1499 * absolute value for the first block, and then delta values
|
yading@10
|
1500 * relative to this value) for all subsequent blocks. The scale of
|
yading@10
|
1501 * this pitch value is semi-logaritmic compared to its use in the
|
yading@10
|
1502 * decoder, so we convert it to normal scale also. */
|
yading@10
|
1503 int block_pitch,
|
yading@10
|
1504 t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2,
|
yading@10
|
1505 t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1,
|
yading@10
|
1506 t3 = s->block_conv_table[3] - s->block_conv_table[2] + 1;
|
yading@10
|
1507
|
yading@10
|
1508 if (n == 0) {
|
yading@10
|
1509 block_pitch = get_bits(gb, s->block_pitch_nbits);
|
yading@10
|
1510 } else
|
yading@10
|
1511 block_pitch = last_block_pitch - s->block_delta_pitch_hrange +
|
yading@10
|
1512 get_bits(gb, s->block_delta_pitch_nbits);
|
yading@10
|
1513 /* Convert last_ so that any next delta is within _range */
|
yading@10
|
1514 last_block_pitch = av_clip(block_pitch,
|
yading@10
|
1515 s->block_delta_pitch_hrange,
|
yading@10
|
1516 s->block_pitch_range -
|
yading@10
|
1517 s->block_delta_pitch_hrange);
|
yading@10
|
1518
|
yading@10
|
1519 /* Convert semi-log-style scale back to normal scale */
|
yading@10
|
1520 if (block_pitch < t1) {
|
yading@10
|
1521 bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch;
|
yading@10
|
1522 } else {
|
yading@10
|
1523 block_pitch -= t1;
|
yading@10
|
1524 if (block_pitch < t2) {
|
yading@10
|
1525 bl_pitch_sh2 =
|
yading@10
|
1526 (s->block_conv_table[1] << 2) + (block_pitch << 1);
|
yading@10
|
1527 } else {
|
yading@10
|
1528 block_pitch -= t2;
|
yading@10
|
1529 if (block_pitch < t3) {
|
yading@10
|
1530 bl_pitch_sh2 =
|
yading@10
|
1531 (s->block_conv_table[2] + block_pitch) << 2;
|
yading@10
|
1532 } else
|
yading@10
|
1533 bl_pitch_sh2 = s->block_conv_table[3] << 2;
|
yading@10
|
1534 }
|
yading@10
|
1535 }
|
yading@10
|
1536 pitch[n] = bl_pitch_sh2 >> 2;
|
yading@10
|
1537 break;
|
yading@10
|
1538 }
|
yading@10
|
1539
|
yading@10
|
1540 case ACB_TYPE_ASYMMETRIC: {
|
yading@10
|
1541 bl_pitch_sh2 = pitch[n] << 2;
|
yading@10
|
1542 break;
|
yading@10
|
1543 }
|
yading@10
|
1544
|
yading@10
|
1545 default: // ACB_TYPE_NONE has no pitch
|
yading@10
|
1546 bl_pitch_sh2 = 0;
|
yading@10
|
1547 break;
|
yading@10
|
1548 }
|
yading@10
|
1549
|
yading@10
|
1550 synth_block(s, gb, n, block_nsamples, bl_pitch_sh2,
|
yading@10
|
1551 lsps, prev_lsps, &frame_descs[bd_idx],
|
yading@10
|
1552 &excitation[n * block_nsamples],
|
yading@10
|
1553 &synth[n * block_nsamples]);
|
yading@10
|
1554 }
|
yading@10
|
1555
|
yading@10
|
1556 /* Averaging projection filter, if applicable. Else, just copy samples
|
yading@10
|
1557 * from synthesis buffer */
|
yading@10
|
1558 if (s->do_apf) {
|
yading@10
|
1559 double i_lsps[MAX_LSPS];
|
yading@10
|
1560 float lpcs[MAX_LSPS];
|
yading@10
|
1561
|
yading@10
|
1562 for (n = 0; n < s->lsps; n++) // LSF -> LSP
|
yading@10
|
1563 i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n]));
|
yading@10
|
1564 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
|
yading@10
|
1565 postfilter(s, synth, samples, 80, lpcs,
|
yading@10
|
1566 &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx],
|
yading@10
|
1567 frame_descs[bd_idx].fcb_type, pitch[0]);
|
yading@10
|
1568
|
yading@10
|
1569 for (n = 0; n < s->lsps; n++) // LSF -> LSP
|
yading@10
|
1570 i_lsps[n] = cos(lsps[n]);
|
yading@10
|
1571 ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
|
yading@10
|
1572 postfilter(s, &synth[80], &samples[80], 80, lpcs,
|
yading@10
|
1573 &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80],
|
yading@10
|
1574 frame_descs[bd_idx].fcb_type, pitch[0]);
|
yading@10
|
1575 } else
|
yading@10
|
1576 memcpy(samples, synth, 160 * sizeof(synth[0]));
|
yading@10
|
1577
|
yading@10
|
1578 /* Cache values for next frame */
|
yading@10
|
1579 s->frame_cntr++;
|
yading@10
|
1580 if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%)
|
yading@10
|
1581 s->last_acb_type = frame_descs[bd_idx].acb_type;
|
yading@10
|
1582 switch (frame_descs[bd_idx].acb_type) {
|
yading@10
|
1583 case ACB_TYPE_NONE:
|
yading@10
|
1584 s->last_pitch_val = 0;
|
yading@10
|
1585 break;
|
yading@10
|
1586 case ACB_TYPE_ASYMMETRIC:
|
yading@10
|
1587 s->last_pitch_val = cur_pitch_val;
|
yading@10
|
1588 break;
|
yading@10
|
1589 case ACB_TYPE_HAMMING:
|
yading@10
|
1590 s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1];
|
yading@10
|
1591 break;
|
yading@10
|
1592 }
|
yading@10
|
1593
|
yading@10
|
1594 return 0;
|
yading@10
|
1595 }
|
yading@10
|
1596
|
yading@10
|
1597 /**
|
yading@10
|
1598 * Ensure minimum value for first item, maximum value for last value,
|
yading@10
|
1599 * proper spacing between each value and proper ordering.
|
yading@10
|
1600 *
|
yading@10
|
1601 * @param lsps array of LSPs
|
yading@10
|
1602 * @param num size of LSP array
|
yading@10
|
1603 *
|
yading@10
|
1604 * @note basically a double version of #ff_acelp_reorder_lsf(), might be
|
yading@10
|
1605 * useful to put in a generic location later on. Parts are also
|
yading@10
|
1606 * present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(),
|
yading@10
|
1607 * which is in float.
|
yading@10
|
1608 */
|
yading@10
|
1609 static void stabilize_lsps(double *lsps, int num)
|
yading@10
|
1610 {
|
yading@10
|
1611 int n, m, l;
|
yading@10
|
1612
|
yading@10
|
1613 /* set minimum value for first, maximum value for last and minimum
|
yading@10
|
1614 * spacing between LSF values.
|
yading@10
|
1615 * Very similar to ff_set_min_dist_lsf(), but in double. */
|
yading@10
|
1616 lsps[0] = FFMAX(lsps[0], 0.0015 * M_PI);
|
yading@10
|
1617 for (n = 1; n < num; n++)
|
yading@10
|
1618 lsps[n] = FFMAX(lsps[n], lsps[n - 1] + 0.0125 * M_PI);
|
yading@10
|
1619 lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI);
|
yading@10
|
1620
|
yading@10
|
1621 /* reorder (looks like one-time / non-recursed bubblesort).
|
yading@10
|
1622 * Very similar to ff_sort_nearly_sorted_floats(), but in double. */
|
yading@10
|
1623 for (n = 1; n < num; n++) {
|
yading@10
|
1624 if (lsps[n] < lsps[n - 1]) {
|
yading@10
|
1625 for (m = 1; m < num; m++) {
|
yading@10
|
1626 double tmp = lsps[m];
|
yading@10
|
1627 for (l = m - 1; l >= 0; l--) {
|
yading@10
|
1628 if (lsps[l] <= tmp) break;
|
yading@10
|
1629 lsps[l + 1] = lsps[l];
|
yading@10
|
1630 }
|
yading@10
|
1631 lsps[l + 1] = tmp;
|
yading@10
|
1632 }
|
yading@10
|
1633 break;
|
yading@10
|
1634 }
|
yading@10
|
1635 }
|
yading@10
|
1636 }
|
yading@10
|
1637
|
yading@10
|
1638 /**
|
yading@10
|
1639 * Test if there's enough bits to read 1 superframe.
|
yading@10
|
1640 *
|
yading@10
|
1641 * @param orig_gb bit I/O context used for reading. This function
|
yading@10
|
1642 * does not modify the state of the bitreader; it
|
yading@10
|
1643 * only uses it to copy the current stream position
|
yading@10
|
1644 * @param s WMA Voice decoding context private data
|
yading@10
|
1645 * @return -1 if unsupported, 1 on not enough bits or 0 if OK.
|
yading@10
|
1646 */
|
yading@10
|
1647 static int check_bits_for_superframe(GetBitContext *orig_gb,
|
yading@10
|
1648 WMAVoiceContext *s)
|
yading@10
|
1649 {
|
yading@10
|
1650 GetBitContext s_gb, *gb = &s_gb;
|
yading@10
|
1651 int n, need_bits, bd_idx;
|
yading@10
|
1652 const struct frame_type_desc *frame_desc;
|
yading@10
|
1653
|
yading@10
|
1654 /* initialize a copy */
|
yading@10
|
1655 init_get_bits(gb, orig_gb->buffer, orig_gb->size_in_bits);
|
yading@10
|
1656 skip_bits_long(gb, get_bits_count(orig_gb));
|
yading@10
|
1657 av_assert1(get_bits_left(gb) == get_bits_left(orig_gb));
|
yading@10
|
1658
|
yading@10
|
1659 /* superframe header */
|
yading@10
|
1660 if (get_bits_left(gb) < 14)
|
yading@10
|
1661 return 1;
|
yading@10
|
1662 if (!get_bits1(gb))
|
yading@10
|
1663 return -1; // WMAPro-in-WMAVoice superframe
|
yading@10
|
1664 if (get_bits1(gb)) skip_bits(gb, 12); // number of samples in superframe
|
yading@10
|
1665 if (s->has_residual_lsps) { // residual LSPs (for all frames)
|
yading@10
|
1666 if (get_bits_left(gb) < s->sframe_lsp_bitsize)
|
yading@10
|
1667 return 1;
|
yading@10
|
1668 skip_bits_long(gb, s->sframe_lsp_bitsize);
|
yading@10
|
1669 }
|
yading@10
|
1670
|
yading@10
|
1671 /* frames */
|
yading@10
|
1672 for (n = 0; n < MAX_FRAMES; n++) {
|
yading@10
|
1673 int aw_idx_is_ext = 0;
|
yading@10
|
1674
|
yading@10
|
1675 if (!s->has_residual_lsps) { // independent LSPs (per-frame)
|
yading@10
|
1676 if (get_bits_left(gb) < s->frame_lsp_bitsize) return 1;
|
yading@10
|
1677 skip_bits_long(gb, s->frame_lsp_bitsize);
|
yading@10
|
1678 }
|
yading@10
|
1679 bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)];
|
yading@10
|
1680 if (bd_idx < 0)
|
yading@10
|
1681 return -1; // invalid frame type VLC code
|
yading@10
|
1682 frame_desc = &frame_descs[bd_idx];
|
yading@10
|
1683 if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
|
yading@10
|
1684 if (get_bits_left(gb) < s->pitch_nbits)
|
yading@10
|
1685 return 1;
|
yading@10
|
1686 skip_bits_long(gb, s->pitch_nbits);
|
yading@10
|
1687 }
|
yading@10
|
1688 if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
|
yading@10
|
1689 skip_bits(gb, 8);
|
yading@10
|
1690 } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
yading@10
|
1691 int tmp = get_bits(gb, 6);
|
yading@10
|
1692 if (tmp >= 0x36) {
|
yading@10
|
1693 skip_bits(gb, 2);
|
yading@10
|
1694 aw_idx_is_ext = 1;
|
yading@10
|
1695 }
|
yading@10
|
1696 }
|
yading@10
|
1697
|
yading@10
|
1698 /* blocks */
|
yading@10
|
1699 if (frame_desc->acb_type == ACB_TYPE_HAMMING) {
|
yading@10
|
1700 need_bits = s->block_pitch_nbits +
|
yading@10
|
1701 (frame_desc->n_blocks - 1) * s->block_delta_pitch_nbits;
|
yading@10
|
1702 } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
yading@10
|
1703 need_bits = 2 * !aw_idx_is_ext;
|
yading@10
|
1704 } else
|
yading@10
|
1705 need_bits = 0;
|
yading@10
|
1706 need_bits += frame_desc->frame_size;
|
yading@10
|
1707 if (get_bits_left(gb) < need_bits)
|
yading@10
|
1708 return 1;
|
yading@10
|
1709 skip_bits_long(gb, need_bits);
|
yading@10
|
1710 }
|
yading@10
|
1711
|
yading@10
|
1712 return 0;
|
yading@10
|
1713 }
|
yading@10
|
1714
|
yading@10
|
1715 /**
|
yading@10
|
1716 * Synthesize output samples for a single superframe. If we have any data
|
yading@10
|
1717 * cached in s->sframe_cache, that will be used instead of whatever is loaded
|
yading@10
|
1718 * in s->gb.
|
yading@10
|
1719 *
|
yading@10
|
1720 * WMA Voice superframes contain 3 frames, each containing 160 audio samples,
|
yading@10
|
1721 * to give a total of 480 samples per frame. See #synth_frame() for frame
|
yading@10
|
1722 * parsing. In addition to 3 frames, superframes can also contain the LSPs
|
yading@10
|
1723 * (if these are globally specified for all frames (residually); they can
|
yading@10
|
1724 * also be specified individually per-frame. See the s->has_residual_lsps
|
yading@10
|
1725 * option), and can specify the number of samples encoded in this superframe
|
yading@10
|
1726 * (if less than 480), usually used to prevent blanks at track boundaries.
|
yading@10
|
1727 *
|
yading@10
|
1728 * @param ctx WMA Voice decoder context
|
yading@10
|
1729 * @return 0 on success, <0 on error or 1 if there was not enough data to
|
yading@10
|
1730 * fully parse the superframe
|
yading@10
|
1731 */
|
yading@10
|
1732 static int synth_superframe(AVCodecContext *ctx, AVFrame *frame,
|
yading@10
|
1733 int *got_frame_ptr)
|
yading@10
|
1734 {
|
yading@10
|
1735 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
1736 GetBitContext *gb = &s->gb, s_gb;
|
yading@10
|
1737 int n, res, n_samples = 480;
|
yading@10
|
1738 double lsps[MAX_FRAMES][MAX_LSPS];
|
yading@10
|
1739 const double *mean_lsf = s->lsps == 16 ?
|
yading@10
|
1740 wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode];
|
yading@10
|
1741 float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12];
|
yading@10
|
1742 float synth[MAX_LSPS + MAX_SFRAMESIZE];
|
yading@10
|
1743 float *samples;
|
yading@10
|
1744
|
yading@10
|
1745 memcpy(synth, s->synth_history,
|
yading@10
|
1746 s->lsps * sizeof(*synth));
|
yading@10
|
1747 memcpy(excitation, s->excitation_history,
|
yading@10
|
1748 s->history_nsamples * sizeof(*excitation));
|
yading@10
|
1749
|
yading@10
|
1750 if (s->sframe_cache_size > 0) {
|
yading@10
|
1751 gb = &s_gb;
|
yading@10
|
1752 init_get_bits(gb, s->sframe_cache, s->sframe_cache_size);
|
yading@10
|
1753 s->sframe_cache_size = 0;
|
yading@10
|
1754 }
|
yading@10
|
1755
|
yading@10
|
1756 if ((res = check_bits_for_superframe(gb, s)) == 1) {
|
yading@10
|
1757 *got_frame_ptr = 0;
|
yading@10
|
1758 return 1;
|
yading@10
|
1759 }
|
yading@10
|
1760
|
yading@10
|
1761 /* First bit is speech/music bit, it differentiates between WMAVoice
|
yading@10
|
1762 * speech samples (the actual codec) and WMAVoice music samples, which
|
yading@10
|
1763 * are really WMAPro-in-WMAVoice-superframes. I've never seen those in
|
yading@10
|
1764 * the wild yet. */
|
yading@10
|
1765 if (!get_bits1(gb)) {
|
yading@10
|
1766 avpriv_request_sample(ctx, "WMAPro-in-WMAVoice");
|
yading@10
|
1767 return AVERROR_PATCHWELCOME;
|
yading@10
|
1768 }
|
yading@10
|
1769
|
yading@10
|
1770 /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */
|
yading@10
|
1771 if (get_bits1(gb)) {
|
yading@10
|
1772 if ((n_samples = get_bits(gb, 12)) > 480) {
|
yading@10
|
1773 av_log(ctx, AV_LOG_ERROR,
|
yading@10
|
1774 "Superframe encodes >480 samples (%d), not allowed\n",
|
yading@10
|
1775 n_samples);
|
yading@10
|
1776 return -1;
|
yading@10
|
1777 }
|
yading@10
|
1778 }
|
yading@10
|
1779 /* Parse LSPs, if global for the superframe (can also be per-frame). */
|
yading@10
|
1780 if (s->has_residual_lsps) {
|
yading@10
|
1781 double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2];
|
yading@10
|
1782
|
yading@10
|
1783 for (n = 0; n < s->lsps; n++)
|
yading@10
|
1784 prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n];
|
yading@10
|
1785
|
yading@10
|
1786 if (s->lsps == 10) {
|
yading@10
|
1787 dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
|
yading@10
|
1788 } else /* s->lsps == 16 */
|
yading@10
|
1789 dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
|
yading@10
|
1790
|
yading@10
|
1791 for (n = 0; n < s->lsps; n++) {
|
yading@10
|
1792 lsps[0][n] = mean_lsf[n] + (a1[n] - a2[n * 2]);
|
yading@10
|
1793 lsps[1][n] = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]);
|
yading@10
|
1794 lsps[2][n] += mean_lsf[n];
|
yading@10
|
1795 }
|
yading@10
|
1796 for (n = 0; n < 3; n++)
|
yading@10
|
1797 stabilize_lsps(lsps[n], s->lsps);
|
yading@10
|
1798 }
|
yading@10
|
1799
|
yading@10
|
1800 /* get output buffer */
|
yading@10
|
1801 frame->nb_samples = 480;
|
yading@10
|
1802 if ((res = ff_get_buffer(ctx, frame, 0)) < 0)
|
yading@10
|
1803 return res;
|
yading@10
|
1804 frame->nb_samples = n_samples;
|
yading@10
|
1805 samples = (float *)frame->data[0];
|
yading@10
|
1806
|
yading@10
|
1807 /* Parse frames, optionally preceded by per-frame (independent) LSPs. */
|
yading@10
|
1808 for (n = 0; n < 3; n++) {
|
yading@10
|
1809 if (!s->has_residual_lsps) {
|
yading@10
|
1810 int m;
|
yading@10
|
1811
|
yading@10
|
1812 if (s->lsps == 10) {
|
yading@10
|
1813 dequant_lsp10i(gb, lsps[n]);
|
yading@10
|
1814 } else /* s->lsps == 16 */
|
yading@10
|
1815 dequant_lsp16i(gb, lsps[n]);
|
yading@10
|
1816
|
yading@10
|
1817 for (m = 0; m < s->lsps; m++)
|
yading@10
|
1818 lsps[n][m] += mean_lsf[m];
|
yading@10
|
1819 stabilize_lsps(lsps[n], s->lsps);
|
yading@10
|
1820 }
|
yading@10
|
1821
|
yading@10
|
1822 if ((res = synth_frame(ctx, gb, n,
|
yading@10
|
1823 &samples[n * MAX_FRAMESIZE],
|
yading@10
|
1824 lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1],
|
yading@10
|
1825 &excitation[s->history_nsamples + n * MAX_FRAMESIZE],
|
yading@10
|
1826 &synth[s->lsps + n * MAX_FRAMESIZE]))) {
|
yading@10
|
1827 *got_frame_ptr = 0;
|
yading@10
|
1828 return res;
|
yading@10
|
1829 }
|
yading@10
|
1830 }
|
yading@10
|
1831
|
yading@10
|
1832 /* Statistics? FIXME - we don't check for length, a slight overrun
|
yading@10
|
1833 * will be caught by internal buffer padding, and anything else
|
yading@10
|
1834 * will be skipped, not read. */
|
yading@10
|
1835 if (get_bits1(gb)) {
|
yading@10
|
1836 res = get_bits(gb, 4);
|
yading@10
|
1837 skip_bits(gb, 10 * (res + 1));
|
yading@10
|
1838 }
|
yading@10
|
1839
|
yading@10
|
1840 *got_frame_ptr = 1;
|
yading@10
|
1841
|
yading@10
|
1842 /* Update history */
|
yading@10
|
1843 memcpy(s->prev_lsps, lsps[2],
|
yading@10
|
1844 s->lsps * sizeof(*s->prev_lsps));
|
yading@10
|
1845 memcpy(s->synth_history, &synth[MAX_SFRAMESIZE],
|
yading@10
|
1846 s->lsps * sizeof(*synth));
|
yading@10
|
1847 memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE],
|
yading@10
|
1848 s->history_nsamples * sizeof(*excitation));
|
yading@10
|
1849 if (s->do_apf)
|
yading@10
|
1850 memmove(s->zero_exc_pf, &s->zero_exc_pf[MAX_SFRAMESIZE],
|
yading@10
|
1851 s->history_nsamples * sizeof(*s->zero_exc_pf));
|
yading@10
|
1852
|
yading@10
|
1853 return 0;
|
yading@10
|
1854 }
|
yading@10
|
1855
|
yading@10
|
1856 /**
|
yading@10
|
1857 * Parse the packet header at the start of each packet (input data to this
|
yading@10
|
1858 * decoder).
|
yading@10
|
1859 *
|
yading@10
|
1860 * @param s WMA Voice decoding context private data
|
yading@10
|
1861 * @return 1 if not enough bits were available, or 0 on success.
|
yading@10
|
1862 */
|
yading@10
|
1863 static int parse_packet_header(WMAVoiceContext *s)
|
yading@10
|
1864 {
|
yading@10
|
1865 GetBitContext *gb = &s->gb;
|
yading@10
|
1866 unsigned int res;
|
yading@10
|
1867
|
yading@10
|
1868 if (get_bits_left(gb) < 11)
|
yading@10
|
1869 return 1;
|
yading@10
|
1870 skip_bits(gb, 4); // packet sequence number
|
yading@10
|
1871 s->has_residual_lsps = get_bits1(gb);
|
yading@10
|
1872 do {
|
yading@10
|
1873 res = get_bits(gb, 6); // number of superframes per packet
|
yading@10
|
1874 // (minus first one if there is spillover)
|
yading@10
|
1875 if (get_bits_left(gb) < 6 * (res == 0x3F) + s->spillover_bitsize)
|
yading@10
|
1876 return 1;
|
yading@10
|
1877 } while (res == 0x3F);
|
yading@10
|
1878 s->spillover_nbits = get_bits(gb, s->spillover_bitsize);
|
yading@10
|
1879
|
yading@10
|
1880 return 0;
|
yading@10
|
1881 }
|
yading@10
|
1882
|
yading@10
|
1883 /**
|
yading@10
|
1884 * Copy (unaligned) bits from gb/data/size to pb.
|
yading@10
|
1885 *
|
yading@10
|
1886 * @param pb target buffer to copy bits into
|
yading@10
|
1887 * @param data source buffer to copy bits from
|
yading@10
|
1888 * @param size size of the source data, in bytes
|
yading@10
|
1889 * @param gb bit I/O context specifying the current position in the source.
|
yading@10
|
1890 * data. This function might use this to align the bit position to
|
yading@10
|
1891 * a whole-byte boundary before calling #avpriv_copy_bits() on aligned
|
yading@10
|
1892 * source data
|
yading@10
|
1893 * @param nbits the amount of bits to copy from source to target
|
yading@10
|
1894 *
|
yading@10
|
1895 * @note after calling this function, the current position in the input bit
|
yading@10
|
1896 * I/O context is undefined.
|
yading@10
|
1897 */
|
yading@10
|
1898 static void copy_bits(PutBitContext *pb,
|
yading@10
|
1899 const uint8_t *data, int size,
|
yading@10
|
1900 GetBitContext *gb, int nbits)
|
yading@10
|
1901 {
|
yading@10
|
1902 int rmn_bytes, rmn_bits;
|
yading@10
|
1903
|
yading@10
|
1904 rmn_bits = rmn_bytes = get_bits_left(gb);
|
yading@10
|
1905 if (rmn_bits < nbits)
|
yading@10
|
1906 return;
|
yading@10
|
1907 if (nbits > pb->size_in_bits - put_bits_count(pb))
|
yading@10
|
1908 return;
|
yading@10
|
1909 rmn_bits &= 7; rmn_bytes >>= 3;
|
yading@10
|
1910 if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0)
|
yading@10
|
1911 put_bits(pb, rmn_bits, get_bits(gb, rmn_bits));
|
yading@10
|
1912 avpriv_copy_bits(pb, data + size - rmn_bytes,
|
yading@10
|
1913 FFMIN(nbits - rmn_bits, rmn_bytes << 3));
|
yading@10
|
1914 }
|
yading@10
|
1915
|
yading@10
|
1916 /**
|
yading@10
|
1917 * Packet decoding: a packet is anything that the (ASF) demuxer contains,
|
yading@10
|
1918 * and we expect that the demuxer / application provides it to us as such
|
yading@10
|
1919 * (else you'll probably get garbage as output). Every packet has a size of
|
yading@10
|
1920 * ctx->block_align bytes, starts with a packet header (see
|
yading@10
|
1921 * #parse_packet_header()), and then a series of superframes. Superframe
|
yading@10
|
1922 * boundaries may exceed packets, i.e. superframes can split data over
|
yading@10
|
1923 * multiple (two) packets.
|
yading@10
|
1924 *
|
yading@10
|
1925 * For more information about frames, see #synth_superframe().
|
yading@10
|
1926 */
|
yading@10
|
1927 static int wmavoice_decode_packet(AVCodecContext *ctx, void *data,
|
yading@10
|
1928 int *got_frame_ptr, AVPacket *avpkt)
|
yading@10
|
1929 {
|
yading@10
|
1930 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
1931 GetBitContext *gb = &s->gb;
|
yading@10
|
1932 int size, res, pos;
|
yading@10
|
1933
|
yading@10
|
1934 /* Packets are sometimes a multiple of ctx->block_align, with a packet
|
yading@10
|
1935 * header at each ctx->block_align bytes. However, FFmpeg's ASF demuxer
|
yading@10
|
1936 * feeds us ASF packets, which may concatenate multiple "codec" packets
|
yading@10
|
1937 * in a single "muxer" packet, so we artificially emulate that by
|
yading@10
|
1938 * capping the packet size at ctx->block_align. */
|
yading@10
|
1939 for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align);
|
yading@10
|
1940 if (!size) {
|
yading@10
|
1941 *got_frame_ptr = 0;
|
yading@10
|
1942 return 0;
|
yading@10
|
1943 }
|
yading@10
|
1944 init_get_bits(&s->gb, avpkt->data, size << 3);
|
yading@10
|
1945
|
yading@10
|
1946 /* size == ctx->block_align is used to indicate whether we are dealing with
|
yading@10
|
1947 * a new packet or a packet of which we already read the packet header
|
yading@10
|
1948 * previously. */
|
yading@10
|
1949 if (size == ctx->block_align) { // new packet header
|
yading@10
|
1950 if ((res = parse_packet_header(s)) < 0)
|
yading@10
|
1951 return res;
|
yading@10
|
1952
|
yading@10
|
1953 /* If the packet header specifies a s->spillover_nbits, then we want
|
yading@10
|
1954 * to push out all data of the previous packet (+ spillover) before
|
yading@10
|
1955 * continuing to parse new superframes in the current packet. */
|
yading@10
|
1956 if (s->spillover_nbits > 0) {
|
yading@10
|
1957 if (s->sframe_cache_size > 0) {
|
yading@10
|
1958 int cnt = get_bits_count(gb);
|
yading@10
|
1959 copy_bits(&s->pb, avpkt->data, size, gb, s->spillover_nbits);
|
yading@10
|
1960 flush_put_bits(&s->pb);
|
yading@10
|
1961 s->sframe_cache_size += s->spillover_nbits;
|
yading@10
|
1962 if ((res = synth_superframe(ctx, data, got_frame_ptr)) == 0 &&
|
yading@10
|
1963 *got_frame_ptr) {
|
yading@10
|
1964 cnt += s->spillover_nbits;
|
yading@10
|
1965 s->skip_bits_next = cnt & 7;
|
yading@10
|
1966 return cnt >> 3;
|
yading@10
|
1967 } else
|
yading@10
|
1968 skip_bits_long (gb, s->spillover_nbits - cnt +
|
yading@10
|
1969 get_bits_count(gb)); // resync
|
yading@10
|
1970 } else
|
yading@10
|
1971 skip_bits_long(gb, s->spillover_nbits); // resync
|
yading@10
|
1972 }
|
yading@10
|
1973 } else if (s->skip_bits_next)
|
yading@10
|
1974 skip_bits(gb, s->skip_bits_next);
|
yading@10
|
1975
|
yading@10
|
1976 /* Try parsing superframes in current packet */
|
yading@10
|
1977 s->sframe_cache_size = 0;
|
yading@10
|
1978 s->skip_bits_next = 0;
|
yading@10
|
1979 pos = get_bits_left(gb);
|
yading@10
|
1980 if ((res = synth_superframe(ctx, data, got_frame_ptr)) < 0) {
|
yading@10
|
1981 return res;
|
yading@10
|
1982 } else if (*got_frame_ptr) {
|
yading@10
|
1983 int cnt = get_bits_count(gb);
|
yading@10
|
1984 s->skip_bits_next = cnt & 7;
|
yading@10
|
1985 return cnt >> 3;
|
yading@10
|
1986 } else if ((s->sframe_cache_size = pos) > 0) {
|
yading@10
|
1987 /* rewind bit reader to start of last (incomplete) superframe... */
|
yading@10
|
1988 init_get_bits(gb, avpkt->data, size << 3);
|
yading@10
|
1989 skip_bits_long(gb, (size << 3) - pos);
|
yading@10
|
1990 av_assert1(get_bits_left(gb) == pos);
|
yading@10
|
1991
|
yading@10
|
1992 /* ...and cache it for spillover in next packet */
|
yading@10
|
1993 init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE);
|
yading@10
|
1994 copy_bits(&s->pb, avpkt->data, size, gb, s->sframe_cache_size);
|
yading@10
|
1995 // FIXME bad - just copy bytes as whole and add use the
|
yading@10
|
1996 // skip_bits_next field
|
yading@10
|
1997 }
|
yading@10
|
1998
|
yading@10
|
1999 return size;
|
yading@10
|
2000 }
|
yading@10
|
2001
|
yading@10
|
2002 static av_cold int wmavoice_decode_end(AVCodecContext *ctx)
|
yading@10
|
2003 {
|
yading@10
|
2004 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
2005
|
yading@10
|
2006 if (s->do_apf) {
|
yading@10
|
2007 ff_rdft_end(&s->rdft);
|
yading@10
|
2008 ff_rdft_end(&s->irdft);
|
yading@10
|
2009 ff_dct_end(&s->dct);
|
yading@10
|
2010 ff_dct_end(&s->dst);
|
yading@10
|
2011 }
|
yading@10
|
2012
|
yading@10
|
2013 return 0;
|
yading@10
|
2014 }
|
yading@10
|
2015
|
yading@10
|
2016 static av_cold void wmavoice_flush(AVCodecContext *ctx)
|
yading@10
|
2017 {
|
yading@10
|
2018 WMAVoiceContext *s = ctx->priv_data;
|
yading@10
|
2019 int n;
|
yading@10
|
2020
|
yading@10
|
2021 s->postfilter_agc = 0;
|
yading@10
|
2022 s->sframe_cache_size = 0;
|
yading@10
|
2023 s->skip_bits_next = 0;
|
yading@10
|
2024 for (n = 0; n < s->lsps; n++)
|
yading@10
|
2025 s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
|
yading@10
|
2026 memset(s->excitation_history, 0,
|
yading@10
|
2027 sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY);
|
yading@10
|
2028 memset(s->synth_history, 0,
|
yading@10
|
2029 sizeof(*s->synth_history) * MAX_LSPS);
|
yading@10
|
2030 memset(s->gain_pred_err, 0,
|
yading@10
|
2031 sizeof(s->gain_pred_err));
|
yading@10
|
2032
|
yading@10
|
2033 if (s->do_apf) {
|
yading@10
|
2034 memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0,
|
yading@10
|
2035 sizeof(*s->synth_filter_out_buf) * s->lsps);
|
yading@10
|
2036 memset(s->dcf_mem, 0,
|
yading@10
|
2037 sizeof(*s->dcf_mem) * 2);
|
yading@10
|
2038 memset(s->zero_exc_pf, 0,
|
yading@10
|
2039 sizeof(*s->zero_exc_pf) * s->history_nsamples);
|
yading@10
|
2040 memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache));
|
yading@10
|
2041 }
|
yading@10
|
2042 }
|
yading@10
|
2043
|
yading@10
|
2044 AVCodec ff_wmavoice_decoder = {
|
yading@10
|
2045 .name = "wmavoice",
|
yading@10
|
2046 .type = AVMEDIA_TYPE_AUDIO,
|
yading@10
|
2047 .id = AV_CODEC_ID_WMAVOICE,
|
yading@10
|
2048 .priv_data_size = sizeof(WMAVoiceContext),
|
yading@10
|
2049 .init = wmavoice_decode_init,
|
yading@10
|
2050 .close = wmavoice_decode_end,
|
yading@10
|
2051 .decode = wmavoice_decode_packet,
|
yading@10
|
2052 .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
|
yading@10
|
2053 .flush = wmavoice_flush,
|
yading@10
|
2054 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio Voice"),
|
yading@10
|
2055 };
|