yading@10
|
1 /*
|
yading@10
|
2 * This file is part of the Independent JPEG Group's software.
|
yading@10
|
3 *
|
yading@10
|
4 * The authors make NO WARRANTY or representation, either express or implied,
|
yading@10
|
5 * with respect to this software, its quality, accuracy, merchantability, or
|
yading@10
|
6 * fitness for a particular purpose. This software is provided "AS IS", and
|
yading@10
|
7 * you, its user, assume the entire risk as to its quality and accuracy.
|
yading@10
|
8 *
|
yading@10
|
9 * This software is copyright (C) 1991, 1992, Thomas G. Lane.
|
yading@10
|
10 * All Rights Reserved except as specified below.
|
yading@10
|
11 *
|
yading@10
|
12 * Permission is hereby granted to use, copy, modify, and distribute this
|
yading@10
|
13 * software (or portions thereof) for any purpose, without fee, subject to
|
yading@10
|
14 * these conditions:
|
yading@10
|
15 * (1) If any part of the source code for this software is distributed, then
|
yading@10
|
16 * this README file must be included, with this copyright and no-warranty
|
yading@10
|
17 * notice unaltered; and any additions, deletions, or changes to the original
|
yading@10
|
18 * files must be clearly indicated in accompanying documentation.
|
yading@10
|
19 * (2) If only executable code is distributed, then the accompanying
|
yading@10
|
20 * documentation must state that "this software is based in part on the work
|
yading@10
|
21 * of the Independent JPEG Group".
|
yading@10
|
22 * (3) Permission for use of this software is granted only if the user accepts
|
yading@10
|
23 * full responsibility for any undesirable consequences; the authors accept
|
yading@10
|
24 * NO LIABILITY for damages of any kind.
|
yading@10
|
25 *
|
yading@10
|
26 * These conditions apply to any software derived from or based on the IJG
|
yading@10
|
27 * code, not just to the unmodified library. If you use our work, you ought
|
yading@10
|
28 * to acknowledge us.
|
yading@10
|
29 *
|
yading@10
|
30 * Permission is NOT granted for the use of any IJG author's name or company
|
yading@10
|
31 * name in advertising or publicity relating to this software or products
|
yading@10
|
32 * derived from it. This software may be referred to only as "the Independent
|
yading@10
|
33 * JPEG Group's software".
|
yading@10
|
34 *
|
yading@10
|
35 * We specifically permit and encourage the use of this software as the basis
|
yading@10
|
36 * of commercial products, provided that all warranty or liability claims are
|
yading@10
|
37 * assumed by the product vendor.
|
yading@10
|
38 *
|
yading@10
|
39 * This file contains the basic inverse-DCT transformation subroutine.
|
yading@10
|
40 *
|
yading@10
|
41 * This implementation is based on an algorithm described in
|
yading@10
|
42 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
yading@10
|
43 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
yading@10
|
44 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
yading@10
|
45 * The primary algorithm described there uses 11 multiplies and 29 adds.
|
yading@10
|
46 * We use their alternate method with 12 multiplies and 32 adds.
|
yading@10
|
47 * The advantage of this method is that no data path contains more than one
|
yading@10
|
48 * multiplication; this allows a very simple and accurate implementation in
|
yading@10
|
49 * scaled fixed-point arithmetic, with a minimal number of shifts.
|
yading@10
|
50 *
|
yading@10
|
51 * I've made lots of modifications to attempt to take advantage of the
|
yading@10
|
52 * sparse nature of the DCT matrices we're getting. Although the logic
|
yading@10
|
53 * is cumbersome, it's straightforward and the resulting code is much
|
yading@10
|
54 * faster.
|
yading@10
|
55 *
|
yading@10
|
56 * A better way to do this would be to pass in the DCT block as a sparse
|
yading@10
|
57 * matrix, perhaps with the difference cases encoded.
|
yading@10
|
58 */
|
yading@10
|
59
|
yading@10
|
60 /**
|
yading@10
|
61 * @file
|
yading@10
|
62 * Independent JPEG Group's LLM idct.
|
yading@10
|
63 */
|
yading@10
|
64
|
yading@10
|
65 #include "libavutil/common.h"
|
yading@10
|
66 #include "dct.h"
|
yading@10
|
67
|
yading@10
|
68 #define EIGHT_BIT_SAMPLES
|
yading@10
|
69
|
yading@10
|
70 #define DCTSIZE 8
|
yading@10
|
71 #define DCTSIZE2 64
|
yading@10
|
72
|
yading@10
|
73 #define GLOBAL
|
yading@10
|
74
|
yading@10
|
75 #define RIGHT_SHIFT(x, n) ((x) >> (n))
|
yading@10
|
76
|
yading@10
|
77 typedef int16_t DCTBLOCK[DCTSIZE2];
|
yading@10
|
78
|
yading@10
|
79 #define CONST_BITS 13
|
yading@10
|
80
|
yading@10
|
81 /*
|
yading@10
|
82 * This routine is specialized to the case DCTSIZE = 8.
|
yading@10
|
83 */
|
yading@10
|
84
|
yading@10
|
85 #if DCTSIZE != 8
|
yading@10
|
86 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
yading@10
|
87 #endif
|
yading@10
|
88
|
yading@10
|
89
|
yading@10
|
90 /*
|
yading@10
|
91 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
|
yading@10
|
92 * on each column. Direct algorithms are also available, but they are
|
yading@10
|
93 * much more complex and seem not to be any faster when reduced to code.
|
yading@10
|
94 *
|
yading@10
|
95 * The poop on this scaling stuff is as follows:
|
yading@10
|
96 *
|
yading@10
|
97 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
yading@10
|
98 * larger than the true IDCT outputs. The final outputs are therefore
|
yading@10
|
99 * a factor of N larger than desired; since N=8 this can be cured by
|
yading@10
|
100 * a simple right shift at the end of the algorithm. The advantage of
|
yading@10
|
101 * this arrangement is that we save two multiplications per 1-D IDCT,
|
yading@10
|
102 * because the y0 and y4 inputs need not be divided by sqrt(N).
|
yading@10
|
103 *
|
yading@10
|
104 * We have to do addition and subtraction of the integer inputs, which
|
yading@10
|
105 * is no problem, and multiplication by fractional constants, which is
|
yading@10
|
106 * a problem to do in integer arithmetic. We multiply all the constants
|
yading@10
|
107 * by CONST_SCALE and convert them to integer constants (thus retaining
|
yading@10
|
108 * CONST_BITS bits of precision in the constants). After doing a
|
yading@10
|
109 * multiplication we have to divide the product by CONST_SCALE, with proper
|
yading@10
|
110 * rounding, to produce the correct output. This division can be done
|
yading@10
|
111 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
yading@10
|
112 * as long as possible so that partial sums can be added together with
|
yading@10
|
113 * full fractional precision.
|
yading@10
|
114 *
|
yading@10
|
115 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
yading@10
|
116 * they are represented to better-than-integral precision. These outputs
|
yading@10
|
117 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
yading@10
|
118 * with the recommended scaling. (To scale up 12-bit sample data further, an
|
yading@10
|
119 * intermediate int32 array would be needed.)
|
yading@10
|
120 *
|
yading@10
|
121 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
yading@10
|
122 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
yading@10
|
123 * shows that the values given below are the most effective.
|
yading@10
|
124 */
|
yading@10
|
125
|
yading@10
|
126 #ifdef EIGHT_BIT_SAMPLES
|
yading@10
|
127 #define PASS1_BITS 2
|
yading@10
|
128 #else
|
yading@10
|
129 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
yading@10
|
130 #endif
|
yading@10
|
131
|
yading@10
|
132 #define ONE ((int32_t) 1)
|
yading@10
|
133
|
yading@10
|
134 #define CONST_SCALE (ONE << CONST_BITS)
|
yading@10
|
135
|
yading@10
|
136 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
yading@10
|
137 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
|
yading@10
|
138 * you will pay a significant penalty in run time. In that case, figure
|
yading@10
|
139 * the correct integer constant values and insert them by hand.
|
yading@10
|
140 */
|
yading@10
|
141
|
yading@10
|
142 /* Actually FIX is no longer used, we precomputed them all */
|
yading@10
|
143 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
|
yading@10
|
144
|
yading@10
|
145 /* Descale and correctly round an int32_t value that's scaled by N bits.
|
yading@10
|
146 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
yading@10
|
147 * the fudge factor is correct for either sign of X.
|
yading@10
|
148 */
|
yading@10
|
149
|
yading@10
|
150 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
yading@10
|
151
|
yading@10
|
152 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
|
yading@10
|
153 * For 8-bit samples with the recommended scaling, all the variable
|
yading@10
|
154 * and constant values involved are no more than 16 bits wide, so a
|
yading@10
|
155 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
|
yading@10
|
156 * this provides a useful speedup on many machines.
|
yading@10
|
157 * There is no way to specify a 16x16->32 multiply in portable C, but
|
yading@10
|
158 * some C compilers will do the right thing if you provide the correct
|
yading@10
|
159 * combination of casts.
|
yading@10
|
160 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
|
yading@10
|
161 */
|
yading@10
|
162
|
yading@10
|
163 #ifdef EIGHT_BIT_SAMPLES
|
yading@10
|
164 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
yading@10
|
165 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
|
yading@10
|
166 #endif
|
yading@10
|
167 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
yading@10
|
168 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
|
yading@10
|
169 #endif
|
yading@10
|
170 #endif
|
yading@10
|
171
|
yading@10
|
172 #ifndef MULTIPLY /* default definition */
|
yading@10
|
173 #define MULTIPLY(var,const) ((var) * (const))
|
yading@10
|
174 #endif
|
yading@10
|
175
|
yading@10
|
176
|
yading@10
|
177 /*
|
yading@10
|
178 Unlike our decoder where we approximate the FIXes, we need to use exact
|
yading@10
|
179 ones here or successive P-frames will drift too much with Reference frame coding
|
yading@10
|
180 */
|
yading@10
|
181 #define FIX_0_211164243 1730
|
yading@10
|
182 #define FIX_0_275899380 2260
|
yading@10
|
183 #define FIX_0_298631336 2446
|
yading@10
|
184 #define FIX_0_390180644 3196
|
yading@10
|
185 #define FIX_0_509795579 4176
|
yading@10
|
186 #define FIX_0_541196100 4433
|
yading@10
|
187 #define FIX_0_601344887 4926
|
yading@10
|
188 #define FIX_0_765366865 6270
|
yading@10
|
189 #define FIX_0_785694958 6436
|
yading@10
|
190 #define FIX_0_899976223 7373
|
yading@10
|
191 #define FIX_1_061594337 8697
|
yading@10
|
192 #define FIX_1_111140466 9102
|
yading@10
|
193 #define FIX_1_175875602 9633
|
yading@10
|
194 #define FIX_1_306562965 10703
|
yading@10
|
195 #define FIX_1_387039845 11363
|
yading@10
|
196 #define FIX_1_451774981 11893
|
yading@10
|
197 #define FIX_1_501321110 12299
|
yading@10
|
198 #define FIX_1_662939225 13623
|
yading@10
|
199 #define FIX_1_847759065 15137
|
yading@10
|
200 #define FIX_1_961570560 16069
|
yading@10
|
201 #define FIX_2_053119869 16819
|
yading@10
|
202 #define FIX_2_172734803 17799
|
yading@10
|
203 #define FIX_2_562915447 20995
|
yading@10
|
204 #define FIX_3_072711026 25172
|
yading@10
|
205
|
yading@10
|
206 /*
|
yading@10
|
207 * Perform the inverse DCT on one block of coefficients.
|
yading@10
|
208 */
|
yading@10
|
209
|
yading@10
|
210 void ff_j_rev_dct(DCTBLOCK data)
|
yading@10
|
211 {
|
yading@10
|
212 int32_t tmp0, tmp1, tmp2, tmp3;
|
yading@10
|
213 int32_t tmp10, tmp11, tmp12, tmp13;
|
yading@10
|
214 int32_t z1, z2, z3, z4, z5;
|
yading@10
|
215 int32_t d0, d1, d2, d3, d4, d5, d6, d7;
|
yading@10
|
216 register int16_t *dataptr;
|
yading@10
|
217 int rowctr;
|
yading@10
|
218
|
yading@10
|
219 /* Pass 1: process rows. */
|
yading@10
|
220 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
yading@10
|
221 /* furthermore, we scale the results by 2**PASS1_BITS. */
|
yading@10
|
222
|
yading@10
|
223 dataptr = data;
|
yading@10
|
224
|
yading@10
|
225 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
yading@10
|
226 /* Due to quantization, we will usually find that many of the input
|
yading@10
|
227 * coefficients are zero, especially the AC terms. We can exploit this
|
yading@10
|
228 * by short-circuiting the IDCT calculation for any row in which all
|
yading@10
|
229 * the AC terms are zero. In that case each output is equal to the
|
yading@10
|
230 * DC coefficient (with scale factor as needed).
|
yading@10
|
231 * With typical images and quantization tables, half or more of the
|
yading@10
|
232 * row DCT calculations can be simplified this way.
|
yading@10
|
233 */
|
yading@10
|
234
|
yading@10
|
235 register int *idataptr = (int*)dataptr;
|
yading@10
|
236
|
yading@10
|
237 /* WARNING: we do the same permutation as MMX idct to simplify the
|
yading@10
|
238 video core */
|
yading@10
|
239 d0 = dataptr[0];
|
yading@10
|
240 d2 = dataptr[1];
|
yading@10
|
241 d4 = dataptr[2];
|
yading@10
|
242 d6 = dataptr[3];
|
yading@10
|
243 d1 = dataptr[4];
|
yading@10
|
244 d3 = dataptr[5];
|
yading@10
|
245 d5 = dataptr[6];
|
yading@10
|
246 d7 = dataptr[7];
|
yading@10
|
247
|
yading@10
|
248 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
|
yading@10
|
249 /* AC terms all zero */
|
yading@10
|
250 if (d0) {
|
yading@10
|
251 /* Compute a 32 bit value to assign. */
|
yading@10
|
252 int16_t dcval = (int16_t) (d0 << PASS1_BITS);
|
yading@10
|
253 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
|
yading@10
|
254
|
yading@10
|
255 idataptr[0] = v;
|
yading@10
|
256 idataptr[1] = v;
|
yading@10
|
257 idataptr[2] = v;
|
yading@10
|
258 idataptr[3] = v;
|
yading@10
|
259 }
|
yading@10
|
260
|
yading@10
|
261 dataptr += DCTSIZE; /* advance pointer to next row */
|
yading@10
|
262 continue;
|
yading@10
|
263 }
|
yading@10
|
264
|
yading@10
|
265 /* Even part: reverse the even part of the forward DCT. */
|
yading@10
|
266 /* The rotator is sqrt(2)*c(-6). */
|
yading@10
|
267 {
|
yading@10
|
268 if (d6) {
|
yading@10
|
269 if (d2) {
|
yading@10
|
270 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
yading@10
|
271 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
yading@10
|
272 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
yading@10
|
273 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
yading@10
|
274
|
yading@10
|
275 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
276 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
277
|
yading@10
|
278 tmp10 = tmp0 + tmp3;
|
yading@10
|
279 tmp13 = tmp0 - tmp3;
|
yading@10
|
280 tmp11 = tmp1 + tmp2;
|
yading@10
|
281 tmp12 = tmp1 - tmp2;
|
yading@10
|
282 } else {
|
yading@10
|
283 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
yading@10
|
284 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
yading@10
|
285 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
yading@10
|
286
|
yading@10
|
287 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
288 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
289
|
yading@10
|
290 tmp10 = tmp0 + tmp3;
|
yading@10
|
291 tmp13 = tmp0 - tmp3;
|
yading@10
|
292 tmp11 = tmp1 + tmp2;
|
yading@10
|
293 tmp12 = tmp1 - tmp2;
|
yading@10
|
294 }
|
yading@10
|
295 } else {
|
yading@10
|
296 if (d2) {
|
yading@10
|
297 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
yading@10
|
298 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
yading@10
|
299 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
yading@10
|
300
|
yading@10
|
301 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
302 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
303
|
yading@10
|
304 tmp10 = tmp0 + tmp3;
|
yading@10
|
305 tmp13 = tmp0 - tmp3;
|
yading@10
|
306 tmp11 = tmp1 + tmp2;
|
yading@10
|
307 tmp12 = tmp1 - tmp2;
|
yading@10
|
308 } else {
|
yading@10
|
309 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
yading@10
|
310 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
yading@10
|
311 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
yading@10
|
312 }
|
yading@10
|
313 }
|
yading@10
|
314
|
yading@10
|
315 /* Odd part per figure 8; the matrix is unitary and hence its
|
yading@10
|
316 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
yading@10
|
317 */
|
yading@10
|
318
|
yading@10
|
319 if (d7) {
|
yading@10
|
320 if (d5) {
|
yading@10
|
321 if (d3) {
|
yading@10
|
322 if (d1) {
|
yading@10
|
323 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
|
yading@10
|
324 z1 = d7 + d1;
|
yading@10
|
325 z2 = d5 + d3;
|
yading@10
|
326 z3 = d7 + d3;
|
yading@10
|
327 z4 = d5 + d1;
|
yading@10
|
328 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
yading@10
|
329
|
yading@10
|
330 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
331 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
332 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
333 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
334 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
335 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
336 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
337 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
338
|
yading@10
|
339 z3 += z5;
|
yading@10
|
340 z4 += z5;
|
yading@10
|
341
|
yading@10
|
342 tmp0 += z1 + z3;
|
yading@10
|
343 tmp1 += z2 + z4;
|
yading@10
|
344 tmp2 += z2 + z3;
|
yading@10
|
345 tmp3 += z1 + z4;
|
yading@10
|
346 } else {
|
yading@10
|
347 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
|
yading@10
|
348 z2 = d5 + d3;
|
yading@10
|
349 z3 = d7 + d3;
|
yading@10
|
350 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
|
yading@10
|
351
|
yading@10
|
352 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
353 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
354 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
355 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
356 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
357 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
358 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
359
|
yading@10
|
360 z3 += z5;
|
yading@10
|
361 z4 += z5;
|
yading@10
|
362
|
yading@10
|
363 tmp0 += z1 + z3;
|
yading@10
|
364 tmp1 += z2 + z4;
|
yading@10
|
365 tmp2 += z2 + z3;
|
yading@10
|
366 tmp3 = z1 + z4;
|
yading@10
|
367 }
|
yading@10
|
368 } else {
|
yading@10
|
369 if (d1) {
|
yading@10
|
370 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
|
yading@10
|
371 z1 = d7 + d1;
|
yading@10
|
372 z4 = d5 + d1;
|
yading@10
|
373 z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
|
yading@10
|
374
|
yading@10
|
375 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
376 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
377 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
378 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
379 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
380 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
381 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
382
|
yading@10
|
383 z3 += z5;
|
yading@10
|
384 z4 += z5;
|
yading@10
|
385
|
yading@10
|
386 tmp0 += z1 + z3;
|
yading@10
|
387 tmp1 += z2 + z4;
|
yading@10
|
388 tmp2 = z2 + z3;
|
yading@10
|
389 tmp3 += z1 + z4;
|
yading@10
|
390 } else {
|
yading@10
|
391 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
|
yading@10
|
392 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
yading@10
|
393 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
394 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
395 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
yading@10
|
396 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
397 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
398 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
|
yading@10
|
399
|
yading@10
|
400 z3 += z5;
|
yading@10
|
401 z4 += z5;
|
yading@10
|
402
|
yading@10
|
403 tmp0 += z3;
|
yading@10
|
404 tmp1 += z4;
|
yading@10
|
405 tmp2 = z2 + z3;
|
yading@10
|
406 tmp3 = z1 + z4;
|
yading@10
|
407 }
|
yading@10
|
408 }
|
yading@10
|
409 } else {
|
yading@10
|
410 if (d3) {
|
yading@10
|
411 if (d1) {
|
yading@10
|
412 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
|
yading@10
|
413 z1 = d7 + d1;
|
yading@10
|
414 z3 = d7 + d3;
|
yading@10
|
415 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
|
yading@10
|
416
|
yading@10
|
417 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
418 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
419 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
420 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
421 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
yading@10
|
422 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
423 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
yading@10
|
424
|
yading@10
|
425 z3 += z5;
|
yading@10
|
426 z4 += z5;
|
yading@10
|
427
|
yading@10
|
428 tmp0 += z1 + z3;
|
yading@10
|
429 tmp1 = z2 + z4;
|
yading@10
|
430 tmp2 += z2 + z3;
|
yading@10
|
431 tmp3 += z1 + z4;
|
yading@10
|
432 } else {
|
yading@10
|
433 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
|
yading@10
|
434 z3 = d7 + d3;
|
yading@10
|
435
|
yading@10
|
436 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
yading@10
|
437 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
438 tmp2 = MULTIPLY(d3, FIX_0_509795579);
|
yading@10
|
439 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
yading@10
|
440 z5 = MULTIPLY(z3, FIX_1_175875602);
|
yading@10
|
441 z3 = MULTIPLY(-z3, FIX_0_785694958);
|
yading@10
|
442
|
yading@10
|
443 tmp0 += z3;
|
yading@10
|
444 tmp1 = z2 + z5;
|
yading@10
|
445 tmp2 += z3;
|
yading@10
|
446 tmp3 = z1 + z5;
|
yading@10
|
447 }
|
yading@10
|
448 } else {
|
yading@10
|
449 if (d1) {
|
yading@10
|
450 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
|
yading@10
|
451 z1 = d7 + d1;
|
yading@10
|
452 z5 = MULTIPLY(z1, FIX_1_175875602);
|
yading@10
|
453
|
yading@10
|
454 z1 = MULTIPLY(z1, FIX_0_275899380);
|
yading@10
|
455 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
456 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
|
yading@10
|
457 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
yading@10
|
458 tmp3 = MULTIPLY(d1, FIX_1_111140466);
|
yading@10
|
459
|
yading@10
|
460 tmp0 += z1;
|
yading@10
|
461 tmp1 = z4 + z5;
|
yading@10
|
462 tmp2 = z3 + z5;
|
yading@10
|
463 tmp3 += z1;
|
yading@10
|
464 } else {
|
yading@10
|
465 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
|
yading@10
|
466 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
|
yading@10
|
467 tmp1 = MULTIPLY(d7, FIX_1_175875602);
|
yading@10
|
468 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
|
yading@10
|
469 tmp3 = MULTIPLY(d7, FIX_0_275899380);
|
yading@10
|
470 }
|
yading@10
|
471 }
|
yading@10
|
472 }
|
yading@10
|
473 } else {
|
yading@10
|
474 if (d5) {
|
yading@10
|
475 if (d3) {
|
yading@10
|
476 if (d1) {
|
yading@10
|
477 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
|
yading@10
|
478 z2 = d5 + d3;
|
yading@10
|
479 z4 = d5 + d1;
|
yading@10
|
480 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
|
yading@10
|
481
|
yading@10
|
482 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
483 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
484 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
485 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
yading@10
|
486 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
487 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
yading@10
|
488 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
489
|
yading@10
|
490 z3 += z5;
|
yading@10
|
491 z4 += z5;
|
yading@10
|
492
|
yading@10
|
493 tmp0 = z1 + z3;
|
yading@10
|
494 tmp1 += z2 + z4;
|
yading@10
|
495 tmp2 += z2 + z3;
|
yading@10
|
496 tmp3 += z1 + z4;
|
yading@10
|
497 } else {
|
yading@10
|
498 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
|
yading@10
|
499 z2 = d5 + d3;
|
yading@10
|
500
|
yading@10
|
501 z5 = MULTIPLY(z2, FIX_1_175875602);
|
yading@10
|
502 tmp1 = MULTIPLY(d5, FIX_1_662939225);
|
yading@10
|
503 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
504 z2 = MULTIPLY(-z2, FIX_1_387039845);
|
yading@10
|
505 tmp2 = MULTIPLY(d3, FIX_1_111140466);
|
yading@10
|
506 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
yading@10
|
507
|
yading@10
|
508 tmp0 = z3 + z5;
|
yading@10
|
509 tmp1 += z2;
|
yading@10
|
510 tmp2 += z2;
|
yading@10
|
511 tmp3 = z4 + z5;
|
yading@10
|
512 }
|
yading@10
|
513 } else {
|
yading@10
|
514 if (d1) {
|
yading@10
|
515 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
|
yading@10
|
516 z4 = d5 + d1;
|
yading@10
|
517
|
yading@10
|
518 z5 = MULTIPLY(z4, FIX_1_175875602);
|
yading@10
|
519 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
yading@10
|
520 tmp3 = MULTIPLY(d1, FIX_0_601344887);
|
yading@10
|
521 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
yading@10
|
522 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
523 z4 = MULTIPLY(z4, FIX_0_785694958);
|
yading@10
|
524
|
yading@10
|
525 tmp0 = z1 + z5;
|
yading@10
|
526 tmp1 += z4;
|
yading@10
|
527 tmp2 = z2 + z5;
|
yading@10
|
528 tmp3 += z4;
|
yading@10
|
529 } else {
|
yading@10
|
530 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
|
yading@10
|
531 tmp0 = MULTIPLY(d5, FIX_1_175875602);
|
yading@10
|
532 tmp1 = MULTIPLY(d5, FIX_0_275899380);
|
yading@10
|
533 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
|
yading@10
|
534 tmp3 = MULTIPLY(d5, FIX_0_785694958);
|
yading@10
|
535 }
|
yading@10
|
536 }
|
yading@10
|
537 } else {
|
yading@10
|
538 if (d3) {
|
yading@10
|
539 if (d1) {
|
yading@10
|
540 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
|
yading@10
|
541 z5 = d1 + d3;
|
yading@10
|
542 tmp3 = MULTIPLY(d1, FIX_0_211164243);
|
yading@10
|
543 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
|
yading@10
|
544 z1 = MULTIPLY(d1, FIX_1_061594337);
|
yading@10
|
545 z2 = MULTIPLY(-d3, FIX_2_172734803);
|
yading@10
|
546 z4 = MULTIPLY(z5, FIX_0_785694958);
|
yading@10
|
547 z5 = MULTIPLY(z5, FIX_1_175875602);
|
yading@10
|
548
|
yading@10
|
549 tmp0 = z1 - z4;
|
yading@10
|
550 tmp1 = z2 + z4;
|
yading@10
|
551 tmp2 += z5;
|
yading@10
|
552 tmp3 += z5;
|
yading@10
|
553 } else {
|
yading@10
|
554 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
|
yading@10
|
555 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
|
yading@10
|
556 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
|
yading@10
|
557 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
|
yading@10
|
558 tmp3 = MULTIPLY(d3, FIX_1_175875602);
|
yading@10
|
559 }
|
yading@10
|
560 } else {
|
yading@10
|
561 if (d1) {
|
yading@10
|
562 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
|
yading@10
|
563 tmp0 = MULTIPLY(d1, FIX_0_275899380);
|
yading@10
|
564 tmp1 = MULTIPLY(d1, FIX_0_785694958);
|
yading@10
|
565 tmp2 = MULTIPLY(d1, FIX_1_175875602);
|
yading@10
|
566 tmp3 = MULTIPLY(d1, FIX_1_387039845);
|
yading@10
|
567 } else {
|
yading@10
|
568 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
|
yading@10
|
569 tmp0 = tmp1 = tmp2 = tmp3 = 0;
|
yading@10
|
570 }
|
yading@10
|
571 }
|
yading@10
|
572 }
|
yading@10
|
573 }
|
yading@10
|
574 }
|
yading@10
|
575 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
yading@10
|
576
|
yading@10
|
577 dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
yading@10
|
578 dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
yading@10
|
579 dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
yading@10
|
580 dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
yading@10
|
581 dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
yading@10
|
582 dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
yading@10
|
583 dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
yading@10
|
584 dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
yading@10
|
585
|
yading@10
|
586 dataptr += DCTSIZE; /* advance pointer to next row */
|
yading@10
|
587 }
|
yading@10
|
588
|
yading@10
|
589 /* Pass 2: process columns. */
|
yading@10
|
590 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
yading@10
|
591 /* and also undo the PASS1_BITS scaling. */
|
yading@10
|
592
|
yading@10
|
593 dataptr = data;
|
yading@10
|
594 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
yading@10
|
595 /* Columns of zeroes can be exploited in the same way as we did with rows.
|
yading@10
|
596 * However, the row calculation has created many nonzero AC terms, so the
|
yading@10
|
597 * simplification applies less often (typically 5% to 10% of the time).
|
yading@10
|
598 * On machines with very fast multiplication, it's possible that the
|
yading@10
|
599 * test takes more time than it's worth. In that case this section
|
yading@10
|
600 * may be commented out.
|
yading@10
|
601 */
|
yading@10
|
602
|
yading@10
|
603 d0 = dataptr[DCTSIZE*0];
|
yading@10
|
604 d1 = dataptr[DCTSIZE*1];
|
yading@10
|
605 d2 = dataptr[DCTSIZE*2];
|
yading@10
|
606 d3 = dataptr[DCTSIZE*3];
|
yading@10
|
607 d4 = dataptr[DCTSIZE*4];
|
yading@10
|
608 d5 = dataptr[DCTSIZE*5];
|
yading@10
|
609 d6 = dataptr[DCTSIZE*6];
|
yading@10
|
610 d7 = dataptr[DCTSIZE*7];
|
yading@10
|
611
|
yading@10
|
612 /* Even part: reverse the even part of the forward DCT. */
|
yading@10
|
613 /* The rotator is sqrt(2)*c(-6). */
|
yading@10
|
614 if (d6) {
|
yading@10
|
615 if (d2) {
|
yading@10
|
616 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
yading@10
|
617 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
yading@10
|
618 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
yading@10
|
619 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
yading@10
|
620
|
yading@10
|
621 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
622 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
623
|
yading@10
|
624 tmp10 = tmp0 + tmp3;
|
yading@10
|
625 tmp13 = tmp0 - tmp3;
|
yading@10
|
626 tmp11 = tmp1 + tmp2;
|
yading@10
|
627 tmp12 = tmp1 - tmp2;
|
yading@10
|
628 } else {
|
yading@10
|
629 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
yading@10
|
630 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
yading@10
|
631 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
yading@10
|
632
|
yading@10
|
633 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
634 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
635
|
yading@10
|
636 tmp10 = tmp0 + tmp3;
|
yading@10
|
637 tmp13 = tmp0 - tmp3;
|
yading@10
|
638 tmp11 = tmp1 + tmp2;
|
yading@10
|
639 tmp12 = tmp1 - tmp2;
|
yading@10
|
640 }
|
yading@10
|
641 } else {
|
yading@10
|
642 if (d2) {
|
yading@10
|
643 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
yading@10
|
644 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
yading@10
|
645 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
yading@10
|
646
|
yading@10
|
647 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
648 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
649
|
yading@10
|
650 tmp10 = tmp0 + tmp3;
|
yading@10
|
651 tmp13 = tmp0 - tmp3;
|
yading@10
|
652 tmp11 = tmp1 + tmp2;
|
yading@10
|
653 tmp12 = tmp1 - tmp2;
|
yading@10
|
654 } else {
|
yading@10
|
655 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
yading@10
|
656 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
yading@10
|
657 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
yading@10
|
658 }
|
yading@10
|
659 }
|
yading@10
|
660
|
yading@10
|
661 /* Odd part per figure 8; the matrix is unitary and hence its
|
yading@10
|
662 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
yading@10
|
663 */
|
yading@10
|
664 if (d7) {
|
yading@10
|
665 if (d5) {
|
yading@10
|
666 if (d3) {
|
yading@10
|
667 if (d1) {
|
yading@10
|
668 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
|
yading@10
|
669 z1 = d7 + d1;
|
yading@10
|
670 z2 = d5 + d3;
|
yading@10
|
671 z3 = d7 + d3;
|
yading@10
|
672 z4 = d5 + d1;
|
yading@10
|
673 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
yading@10
|
674
|
yading@10
|
675 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
676 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
677 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
678 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
679 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
680 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
681 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
682 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
683
|
yading@10
|
684 z3 += z5;
|
yading@10
|
685 z4 += z5;
|
yading@10
|
686
|
yading@10
|
687 tmp0 += z1 + z3;
|
yading@10
|
688 tmp1 += z2 + z4;
|
yading@10
|
689 tmp2 += z2 + z3;
|
yading@10
|
690 tmp3 += z1 + z4;
|
yading@10
|
691 } else {
|
yading@10
|
692 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
|
yading@10
|
693 z2 = d5 + d3;
|
yading@10
|
694 z3 = d7 + d3;
|
yading@10
|
695 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
|
yading@10
|
696
|
yading@10
|
697 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
698 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
699 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
700 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
701 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
702 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
703 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
704
|
yading@10
|
705 z3 += z5;
|
yading@10
|
706 z4 += z5;
|
yading@10
|
707
|
yading@10
|
708 tmp0 += z1 + z3;
|
yading@10
|
709 tmp1 += z2 + z4;
|
yading@10
|
710 tmp2 += z2 + z3;
|
yading@10
|
711 tmp3 = z1 + z4;
|
yading@10
|
712 }
|
yading@10
|
713 } else {
|
yading@10
|
714 if (d1) {
|
yading@10
|
715 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
|
yading@10
|
716 z1 = d7 + d1;
|
yading@10
|
717 z3 = d7;
|
yading@10
|
718 z4 = d5 + d1;
|
yading@10
|
719 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
yading@10
|
720
|
yading@10
|
721 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
722 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
723 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
724 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
725 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
726 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
727 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
728
|
yading@10
|
729 z3 += z5;
|
yading@10
|
730 z4 += z5;
|
yading@10
|
731
|
yading@10
|
732 tmp0 += z1 + z3;
|
yading@10
|
733 tmp1 += z2 + z4;
|
yading@10
|
734 tmp2 = z2 + z3;
|
yading@10
|
735 tmp3 += z1 + z4;
|
yading@10
|
736 } else {
|
yading@10
|
737 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
|
yading@10
|
738 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
yading@10
|
739 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
740 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
741 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
yading@10
|
742 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
743 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
744 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
|
yading@10
|
745
|
yading@10
|
746 z3 += z5;
|
yading@10
|
747 z4 += z5;
|
yading@10
|
748
|
yading@10
|
749 tmp0 += z3;
|
yading@10
|
750 tmp1 += z4;
|
yading@10
|
751 tmp2 = z2 + z3;
|
yading@10
|
752 tmp3 = z1 + z4;
|
yading@10
|
753 }
|
yading@10
|
754 }
|
yading@10
|
755 } else {
|
yading@10
|
756 if (d3) {
|
yading@10
|
757 if (d1) {
|
yading@10
|
758 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
|
yading@10
|
759 z1 = d7 + d1;
|
yading@10
|
760 z3 = d7 + d3;
|
yading@10
|
761 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
|
yading@10
|
762
|
yading@10
|
763 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
yading@10
|
764 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
765 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
766 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
yading@10
|
767 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
yading@10
|
768 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
yading@10
|
769 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
yading@10
|
770
|
yading@10
|
771 z3 += z5;
|
yading@10
|
772 z4 += z5;
|
yading@10
|
773
|
yading@10
|
774 tmp0 += z1 + z3;
|
yading@10
|
775 tmp1 = z2 + z4;
|
yading@10
|
776 tmp2 += z2 + z3;
|
yading@10
|
777 tmp3 += z1 + z4;
|
yading@10
|
778 } else {
|
yading@10
|
779 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
|
yading@10
|
780 z3 = d7 + d3;
|
yading@10
|
781
|
yading@10
|
782 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
yading@10
|
783 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
yading@10
|
784 tmp2 = MULTIPLY(d3, FIX_0_509795579);
|
yading@10
|
785 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
yading@10
|
786 z5 = MULTIPLY(z3, FIX_1_175875602);
|
yading@10
|
787 z3 = MULTIPLY(-z3, FIX_0_785694958);
|
yading@10
|
788
|
yading@10
|
789 tmp0 += z3;
|
yading@10
|
790 tmp1 = z2 + z5;
|
yading@10
|
791 tmp2 += z3;
|
yading@10
|
792 tmp3 = z1 + z5;
|
yading@10
|
793 }
|
yading@10
|
794 } else {
|
yading@10
|
795 if (d1) {
|
yading@10
|
796 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
|
yading@10
|
797 z1 = d7 + d1;
|
yading@10
|
798 z5 = MULTIPLY(z1, FIX_1_175875602);
|
yading@10
|
799
|
yading@10
|
800 z1 = MULTIPLY(z1, FIX_0_275899380);
|
yading@10
|
801 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
yading@10
|
802 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
|
yading@10
|
803 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
yading@10
|
804 tmp3 = MULTIPLY(d1, FIX_1_111140466);
|
yading@10
|
805
|
yading@10
|
806 tmp0 += z1;
|
yading@10
|
807 tmp1 = z4 + z5;
|
yading@10
|
808 tmp2 = z3 + z5;
|
yading@10
|
809 tmp3 += z1;
|
yading@10
|
810 } else {
|
yading@10
|
811 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
|
yading@10
|
812 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
|
yading@10
|
813 tmp1 = MULTIPLY(d7, FIX_1_175875602);
|
yading@10
|
814 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
|
yading@10
|
815 tmp3 = MULTIPLY(d7, FIX_0_275899380);
|
yading@10
|
816 }
|
yading@10
|
817 }
|
yading@10
|
818 }
|
yading@10
|
819 } else {
|
yading@10
|
820 if (d5) {
|
yading@10
|
821 if (d3) {
|
yading@10
|
822 if (d1) {
|
yading@10
|
823 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
|
yading@10
|
824 z2 = d5 + d3;
|
yading@10
|
825 z4 = d5 + d1;
|
yading@10
|
826 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
|
yading@10
|
827
|
yading@10
|
828 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
yading@10
|
829 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
yading@10
|
830 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
yading@10
|
831 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
yading@10
|
832 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
yading@10
|
833 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
yading@10
|
834 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
yading@10
|
835
|
yading@10
|
836 z3 += z5;
|
yading@10
|
837 z4 += z5;
|
yading@10
|
838
|
yading@10
|
839 tmp0 = z1 + z3;
|
yading@10
|
840 tmp1 += z2 + z4;
|
yading@10
|
841 tmp2 += z2 + z3;
|
yading@10
|
842 tmp3 += z1 + z4;
|
yading@10
|
843 } else {
|
yading@10
|
844 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
|
yading@10
|
845 z2 = d5 + d3;
|
yading@10
|
846
|
yading@10
|
847 z5 = MULTIPLY(z2, FIX_1_175875602);
|
yading@10
|
848 tmp1 = MULTIPLY(d5, FIX_1_662939225);
|
yading@10
|
849 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
yading@10
|
850 z2 = MULTIPLY(-z2, FIX_1_387039845);
|
yading@10
|
851 tmp2 = MULTIPLY(d3, FIX_1_111140466);
|
yading@10
|
852 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
yading@10
|
853
|
yading@10
|
854 tmp0 = z3 + z5;
|
yading@10
|
855 tmp1 += z2;
|
yading@10
|
856 tmp2 += z2;
|
yading@10
|
857 tmp3 = z4 + z5;
|
yading@10
|
858 }
|
yading@10
|
859 } else {
|
yading@10
|
860 if (d1) {
|
yading@10
|
861 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
|
yading@10
|
862 z4 = d5 + d1;
|
yading@10
|
863
|
yading@10
|
864 z5 = MULTIPLY(z4, FIX_1_175875602);
|
yading@10
|
865 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
yading@10
|
866 tmp3 = MULTIPLY(d1, FIX_0_601344887);
|
yading@10
|
867 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
yading@10
|
868 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
yading@10
|
869 z4 = MULTIPLY(z4, FIX_0_785694958);
|
yading@10
|
870
|
yading@10
|
871 tmp0 = z1 + z5;
|
yading@10
|
872 tmp1 += z4;
|
yading@10
|
873 tmp2 = z2 + z5;
|
yading@10
|
874 tmp3 += z4;
|
yading@10
|
875 } else {
|
yading@10
|
876 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
|
yading@10
|
877 tmp0 = MULTIPLY(d5, FIX_1_175875602);
|
yading@10
|
878 tmp1 = MULTIPLY(d5, FIX_0_275899380);
|
yading@10
|
879 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
|
yading@10
|
880 tmp3 = MULTIPLY(d5, FIX_0_785694958);
|
yading@10
|
881 }
|
yading@10
|
882 }
|
yading@10
|
883 } else {
|
yading@10
|
884 if (d3) {
|
yading@10
|
885 if (d1) {
|
yading@10
|
886 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
|
yading@10
|
887 z5 = d1 + d3;
|
yading@10
|
888 tmp3 = MULTIPLY(d1, FIX_0_211164243);
|
yading@10
|
889 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
|
yading@10
|
890 z1 = MULTIPLY(d1, FIX_1_061594337);
|
yading@10
|
891 z2 = MULTIPLY(-d3, FIX_2_172734803);
|
yading@10
|
892 z4 = MULTIPLY(z5, FIX_0_785694958);
|
yading@10
|
893 z5 = MULTIPLY(z5, FIX_1_175875602);
|
yading@10
|
894
|
yading@10
|
895 tmp0 = z1 - z4;
|
yading@10
|
896 tmp1 = z2 + z4;
|
yading@10
|
897 tmp2 += z5;
|
yading@10
|
898 tmp3 += z5;
|
yading@10
|
899 } else {
|
yading@10
|
900 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
|
yading@10
|
901 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
|
yading@10
|
902 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
|
yading@10
|
903 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
|
yading@10
|
904 tmp3 = MULTIPLY(d3, FIX_1_175875602);
|
yading@10
|
905 }
|
yading@10
|
906 } else {
|
yading@10
|
907 if (d1) {
|
yading@10
|
908 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
|
yading@10
|
909 tmp0 = MULTIPLY(d1, FIX_0_275899380);
|
yading@10
|
910 tmp1 = MULTIPLY(d1, FIX_0_785694958);
|
yading@10
|
911 tmp2 = MULTIPLY(d1, FIX_1_175875602);
|
yading@10
|
912 tmp3 = MULTIPLY(d1, FIX_1_387039845);
|
yading@10
|
913 } else {
|
yading@10
|
914 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
|
yading@10
|
915 tmp0 = tmp1 = tmp2 = tmp3 = 0;
|
yading@10
|
916 }
|
yading@10
|
917 }
|
yading@10
|
918 }
|
yading@10
|
919 }
|
yading@10
|
920
|
yading@10
|
921 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
yading@10
|
922
|
yading@10
|
923 dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3,
|
yading@10
|
924 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
925 dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3,
|
yading@10
|
926 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
927 dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2,
|
yading@10
|
928 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
929 dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2,
|
yading@10
|
930 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
931 dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1,
|
yading@10
|
932 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
933 dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1,
|
yading@10
|
934 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
935 dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0,
|
yading@10
|
936 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
937 dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0,
|
yading@10
|
938 CONST_BITS+PASS1_BITS+3);
|
yading@10
|
939
|
yading@10
|
940 dataptr++; /* advance pointer to next column */
|
yading@10
|
941 }
|
yading@10
|
942 }
|
yading@10
|
943
|
yading@10
|
944 #undef DCTSIZE
|
yading@10
|
945 #define DCTSIZE 4
|
yading@10
|
946 #define DCTSTRIDE 8
|
yading@10
|
947
|
yading@10
|
948 void ff_j_rev_dct4(DCTBLOCK data)
|
yading@10
|
949 {
|
yading@10
|
950 int32_t tmp0, tmp1, tmp2, tmp3;
|
yading@10
|
951 int32_t tmp10, tmp11, tmp12, tmp13;
|
yading@10
|
952 int32_t z1;
|
yading@10
|
953 int32_t d0, d2, d4, d6;
|
yading@10
|
954 register int16_t *dataptr;
|
yading@10
|
955 int rowctr;
|
yading@10
|
956
|
yading@10
|
957 /* Pass 1: process rows. */
|
yading@10
|
958 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
yading@10
|
959 /* furthermore, we scale the results by 2**PASS1_BITS. */
|
yading@10
|
960
|
yading@10
|
961 data[0] += 4;
|
yading@10
|
962
|
yading@10
|
963 dataptr = data;
|
yading@10
|
964
|
yading@10
|
965 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
yading@10
|
966 /* Due to quantization, we will usually find that many of the input
|
yading@10
|
967 * coefficients are zero, especially the AC terms. We can exploit this
|
yading@10
|
968 * by short-circuiting the IDCT calculation for any row in which all
|
yading@10
|
969 * the AC terms are zero. In that case each output is equal to the
|
yading@10
|
970 * DC coefficient (with scale factor as needed).
|
yading@10
|
971 * With typical images and quantization tables, half or more of the
|
yading@10
|
972 * row DCT calculations can be simplified this way.
|
yading@10
|
973 */
|
yading@10
|
974
|
yading@10
|
975 register int *idataptr = (int*)dataptr;
|
yading@10
|
976
|
yading@10
|
977 d0 = dataptr[0];
|
yading@10
|
978 d2 = dataptr[1];
|
yading@10
|
979 d4 = dataptr[2];
|
yading@10
|
980 d6 = dataptr[3];
|
yading@10
|
981
|
yading@10
|
982 if ((d2 | d4 | d6) == 0) {
|
yading@10
|
983 /* AC terms all zero */
|
yading@10
|
984 if (d0) {
|
yading@10
|
985 /* Compute a 32 bit value to assign. */
|
yading@10
|
986 int16_t dcval = (int16_t) (d0 << PASS1_BITS);
|
yading@10
|
987 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
|
yading@10
|
988
|
yading@10
|
989 idataptr[0] = v;
|
yading@10
|
990 idataptr[1] = v;
|
yading@10
|
991 }
|
yading@10
|
992
|
yading@10
|
993 dataptr += DCTSTRIDE; /* advance pointer to next row */
|
yading@10
|
994 continue;
|
yading@10
|
995 }
|
yading@10
|
996
|
yading@10
|
997 /* Even part: reverse the even part of the forward DCT. */
|
yading@10
|
998 /* The rotator is sqrt(2)*c(-6). */
|
yading@10
|
999 if (d6) {
|
yading@10
|
1000 if (d2) {
|
yading@10
|
1001 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
yading@10
|
1002 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
yading@10
|
1003 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
yading@10
|
1004 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
yading@10
|
1005
|
yading@10
|
1006 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1007 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1008
|
yading@10
|
1009 tmp10 = tmp0 + tmp3;
|
yading@10
|
1010 tmp13 = tmp0 - tmp3;
|
yading@10
|
1011 tmp11 = tmp1 + tmp2;
|
yading@10
|
1012 tmp12 = tmp1 - tmp2;
|
yading@10
|
1013 } else {
|
yading@10
|
1014 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
yading@10
|
1015 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
yading@10
|
1016 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
yading@10
|
1017
|
yading@10
|
1018 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1019 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1020
|
yading@10
|
1021 tmp10 = tmp0 + tmp3;
|
yading@10
|
1022 tmp13 = tmp0 - tmp3;
|
yading@10
|
1023 tmp11 = tmp1 + tmp2;
|
yading@10
|
1024 tmp12 = tmp1 - tmp2;
|
yading@10
|
1025 }
|
yading@10
|
1026 } else {
|
yading@10
|
1027 if (d2) {
|
yading@10
|
1028 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
yading@10
|
1029 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
yading@10
|
1030 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
yading@10
|
1031
|
yading@10
|
1032 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1033 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1034
|
yading@10
|
1035 tmp10 = tmp0 + tmp3;
|
yading@10
|
1036 tmp13 = tmp0 - tmp3;
|
yading@10
|
1037 tmp11 = tmp1 + tmp2;
|
yading@10
|
1038 tmp12 = tmp1 - tmp2;
|
yading@10
|
1039 } else {
|
yading@10
|
1040 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
yading@10
|
1041 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1042 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1043 }
|
yading@10
|
1044 }
|
yading@10
|
1045
|
yading@10
|
1046 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
yading@10
|
1047
|
yading@10
|
1048 dataptr[0] = (int16_t) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
|
yading@10
|
1049 dataptr[1] = (int16_t) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
|
yading@10
|
1050 dataptr[2] = (int16_t) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
|
yading@10
|
1051 dataptr[3] = (int16_t) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
|
yading@10
|
1052
|
yading@10
|
1053 dataptr += DCTSTRIDE; /* advance pointer to next row */
|
yading@10
|
1054 }
|
yading@10
|
1055
|
yading@10
|
1056 /* Pass 2: process columns. */
|
yading@10
|
1057 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
yading@10
|
1058 /* and also undo the PASS1_BITS scaling. */
|
yading@10
|
1059
|
yading@10
|
1060 dataptr = data;
|
yading@10
|
1061 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
yading@10
|
1062 /* Columns of zeroes can be exploited in the same way as we did with rows.
|
yading@10
|
1063 * However, the row calculation has created many nonzero AC terms, so the
|
yading@10
|
1064 * simplification applies less often (typically 5% to 10% of the time).
|
yading@10
|
1065 * On machines with very fast multiplication, it's possible that the
|
yading@10
|
1066 * test takes more time than it's worth. In that case this section
|
yading@10
|
1067 * may be commented out.
|
yading@10
|
1068 */
|
yading@10
|
1069
|
yading@10
|
1070 d0 = dataptr[DCTSTRIDE*0];
|
yading@10
|
1071 d2 = dataptr[DCTSTRIDE*1];
|
yading@10
|
1072 d4 = dataptr[DCTSTRIDE*2];
|
yading@10
|
1073 d6 = dataptr[DCTSTRIDE*3];
|
yading@10
|
1074
|
yading@10
|
1075 /* Even part: reverse the even part of the forward DCT. */
|
yading@10
|
1076 /* The rotator is sqrt(2)*c(-6). */
|
yading@10
|
1077 if (d6) {
|
yading@10
|
1078 if (d2) {
|
yading@10
|
1079 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
yading@10
|
1080 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
yading@10
|
1081 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
yading@10
|
1082 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
yading@10
|
1083
|
yading@10
|
1084 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1085 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1086
|
yading@10
|
1087 tmp10 = tmp0 + tmp3;
|
yading@10
|
1088 tmp13 = tmp0 - tmp3;
|
yading@10
|
1089 tmp11 = tmp1 + tmp2;
|
yading@10
|
1090 tmp12 = tmp1 - tmp2;
|
yading@10
|
1091 } else {
|
yading@10
|
1092 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
yading@10
|
1093 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
yading@10
|
1094 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
yading@10
|
1095
|
yading@10
|
1096 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1097 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1098
|
yading@10
|
1099 tmp10 = tmp0 + tmp3;
|
yading@10
|
1100 tmp13 = tmp0 - tmp3;
|
yading@10
|
1101 tmp11 = tmp1 + tmp2;
|
yading@10
|
1102 tmp12 = tmp1 - tmp2;
|
yading@10
|
1103 }
|
yading@10
|
1104 } else {
|
yading@10
|
1105 if (d2) {
|
yading@10
|
1106 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
yading@10
|
1107 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
yading@10
|
1108 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
yading@10
|
1109
|
yading@10
|
1110 tmp0 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1111 tmp1 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1112
|
yading@10
|
1113 tmp10 = tmp0 + tmp3;
|
yading@10
|
1114 tmp13 = tmp0 - tmp3;
|
yading@10
|
1115 tmp11 = tmp1 + tmp2;
|
yading@10
|
1116 tmp12 = tmp1 - tmp2;
|
yading@10
|
1117 } else {
|
yading@10
|
1118 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
yading@10
|
1119 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
yading@10
|
1120 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
yading@10
|
1121 }
|
yading@10
|
1122 }
|
yading@10
|
1123
|
yading@10
|
1124 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
yading@10
|
1125
|
yading@10
|
1126 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
|
yading@10
|
1127 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
|
yading@10
|
1128 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
|
yading@10
|
1129 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
|
yading@10
|
1130
|
yading@10
|
1131 dataptr++; /* advance pointer to next column */
|
yading@10
|
1132 }
|
yading@10
|
1133 }
|
yading@10
|
1134
|
yading@10
|
1135 void ff_j_rev_dct2(DCTBLOCK data){
|
yading@10
|
1136 int d00, d01, d10, d11;
|
yading@10
|
1137
|
yading@10
|
1138 data[0] += 4;
|
yading@10
|
1139 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
|
yading@10
|
1140 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
|
yading@10
|
1141 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
|
yading@10
|
1142 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
|
yading@10
|
1143
|
yading@10
|
1144 data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
|
yading@10
|
1145 data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
|
yading@10
|
1146 data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
|
yading@10
|
1147 data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
|
yading@10
|
1148 }
|
yading@10
|
1149
|
yading@10
|
1150 void ff_j_rev_dct1(DCTBLOCK data){
|
yading@10
|
1151 data[0] = (data[0] + 4)>>3;
|
yading@10
|
1152 }
|
yading@10
|
1153
|
yading@10
|
1154 #undef FIX
|
yading@10
|
1155 #undef CONST_BITS
|