annotate ffmpeg/libavcodec/jfdctint_template.c @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * This file is part of the Independent JPEG Group's software.
yading@10 3 *
yading@10 4 * The authors make NO WARRANTY or representation, either express or implied,
yading@10 5 * with respect to this software, its quality, accuracy, merchantability, or
yading@10 6 * fitness for a particular purpose. This software is provided "AS IS", and
yading@10 7 * you, its user, assume the entire risk as to its quality and accuracy.
yading@10 8 *
yading@10 9 * This software is copyright (C) 1991-1996, Thomas G. Lane.
yading@10 10 * All Rights Reserved except as specified below.
yading@10 11 *
yading@10 12 * Permission is hereby granted to use, copy, modify, and distribute this
yading@10 13 * software (or portions thereof) for any purpose, without fee, subject to
yading@10 14 * these conditions:
yading@10 15 * (1) If any part of the source code for this software is distributed, then
yading@10 16 * this README file must be included, with this copyright and no-warranty
yading@10 17 * notice unaltered; and any additions, deletions, or changes to the original
yading@10 18 * files must be clearly indicated in accompanying documentation.
yading@10 19 * (2) If only executable code is distributed, then the accompanying
yading@10 20 * documentation must state that "this software is based in part on the work
yading@10 21 * of the Independent JPEG Group".
yading@10 22 * (3) Permission for use of this software is granted only if the user accepts
yading@10 23 * full responsibility for any undesirable consequences; the authors accept
yading@10 24 * NO LIABILITY for damages of any kind.
yading@10 25 *
yading@10 26 * These conditions apply to any software derived from or based on the IJG
yading@10 27 * code, not just to the unmodified library. If you use our work, you ought
yading@10 28 * to acknowledge us.
yading@10 29 *
yading@10 30 * Permission is NOT granted for the use of any IJG author's name or company
yading@10 31 * name in advertising or publicity relating to this software or products
yading@10 32 * derived from it. This software may be referred to only as "the Independent
yading@10 33 * JPEG Group's software".
yading@10 34 *
yading@10 35 * We specifically permit and encourage the use of this software as the basis
yading@10 36 * of commercial products, provided that all warranty or liability claims are
yading@10 37 * assumed by the product vendor.
yading@10 38 *
yading@10 39 * This file contains a slow-but-accurate integer implementation of the
yading@10 40 * forward DCT (Discrete Cosine Transform).
yading@10 41 *
yading@10 42 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
yading@10 43 * on each column. Direct algorithms are also available, but they are
yading@10 44 * much more complex and seem not to be any faster when reduced to code.
yading@10 45 *
yading@10 46 * This implementation is based on an algorithm described in
yading@10 47 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
yading@10 48 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
yading@10 49 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
yading@10 50 * The primary algorithm described there uses 11 multiplies and 29 adds.
yading@10 51 * We use their alternate method with 12 multiplies and 32 adds.
yading@10 52 * The advantage of this method is that no data path contains more than one
yading@10 53 * multiplication; this allows a very simple and accurate implementation in
yading@10 54 * scaled fixed-point arithmetic, with a minimal number of shifts.
yading@10 55 */
yading@10 56
yading@10 57 /**
yading@10 58 * @file
yading@10 59 * Independent JPEG Group's slow & accurate dct.
yading@10 60 */
yading@10 61
yading@10 62 #include "libavutil/common.h"
yading@10 63 #include "dct.h"
yading@10 64
yading@10 65 #include "bit_depth_template.c"
yading@10 66
yading@10 67 #define DCTSIZE 8
yading@10 68 #define BITS_IN_JSAMPLE BIT_DEPTH
yading@10 69 #define GLOBAL(x) x
yading@10 70 #define RIGHT_SHIFT(x, n) ((x) >> (n))
yading@10 71 #define MULTIPLY16C16(var,const) ((var)*(const))
yading@10 72
yading@10 73 #if 1 //def USE_ACCURATE_ROUNDING
yading@10 74 #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
yading@10 75 #else
yading@10 76 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
yading@10 77 #endif
yading@10 78
yading@10 79
yading@10 80 /*
yading@10 81 * This module is specialized to the case DCTSIZE = 8.
yading@10 82 */
yading@10 83
yading@10 84 #if DCTSIZE != 8
yading@10 85 #error "Sorry, this code only copes with 8x8 DCTs."
yading@10 86 #endif
yading@10 87
yading@10 88
yading@10 89 /*
yading@10 90 * The poop on this scaling stuff is as follows:
yading@10 91 *
yading@10 92 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
yading@10 93 * larger than the true DCT outputs. The final outputs are therefore
yading@10 94 * a factor of N larger than desired; since N=8 this can be cured by
yading@10 95 * a simple right shift at the end of the algorithm. The advantage of
yading@10 96 * this arrangement is that we save two multiplications per 1-D DCT,
yading@10 97 * because the y0 and y4 outputs need not be divided by sqrt(N).
yading@10 98 * In the IJG code, this factor of 8 is removed by the quantization step
yading@10 99 * (in jcdctmgr.c), NOT in this module.
yading@10 100 *
yading@10 101 * We have to do addition and subtraction of the integer inputs, which
yading@10 102 * is no problem, and multiplication by fractional constants, which is
yading@10 103 * a problem to do in integer arithmetic. We multiply all the constants
yading@10 104 * by CONST_SCALE and convert them to integer constants (thus retaining
yading@10 105 * CONST_BITS bits of precision in the constants). After doing a
yading@10 106 * multiplication we have to divide the product by CONST_SCALE, with proper
yading@10 107 * rounding, to produce the correct output. This division can be done
yading@10 108 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
yading@10 109 * as long as possible so that partial sums can be added together with
yading@10 110 * full fractional precision.
yading@10 111 *
yading@10 112 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
yading@10 113 * they are represented to better-than-integral precision. These outputs
yading@10 114 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
yading@10 115 * with the recommended scaling. (For 12-bit sample data, the intermediate
yading@10 116 * array is int32_t anyway.)
yading@10 117 *
yading@10 118 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
yading@10 119 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
yading@10 120 * shows that the values given below are the most effective.
yading@10 121 */
yading@10 122
yading@10 123 #undef CONST_BITS
yading@10 124 #undef PASS1_BITS
yading@10 125 #undef OUT_SHIFT
yading@10 126
yading@10 127 #if BITS_IN_JSAMPLE == 8
yading@10 128 #define CONST_BITS 13
yading@10 129 #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */
yading@10 130 #define OUT_SHIFT PASS1_BITS
yading@10 131 #else
yading@10 132 #define CONST_BITS 13
yading@10 133 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
yading@10 134 #define OUT_SHIFT (PASS1_BITS + 1)
yading@10 135 #endif
yading@10 136
yading@10 137 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
yading@10 138 * causing a lot of useless floating-point operations at run time.
yading@10 139 * To get around this we use the following pre-calculated constants.
yading@10 140 * If you change CONST_BITS you may want to add appropriate values.
yading@10 141 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
yading@10 142 */
yading@10 143
yading@10 144 #if CONST_BITS == 13
yading@10 145 #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */
yading@10 146 #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */
yading@10 147 #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */
yading@10 148 #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */
yading@10 149 #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */
yading@10 150 #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */
yading@10 151 #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */
yading@10 152 #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */
yading@10 153 #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */
yading@10 154 #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */
yading@10 155 #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */
yading@10 156 #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */
yading@10 157 #else
yading@10 158 #define FIX_0_298631336 FIX(0.298631336)
yading@10 159 #define FIX_0_390180644 FIX(0.390180644)
yading@10 160 #define FIX_0_541196100 FIX(0.541196100)
yading@10 161 #define FIX_0_765366865 FIX(0.765366865)
yading@10 162 #define FIX_0_899976223 FIX(0.899976223)
yading@10 163 #define FIX_1_175875602 FIX(1.175875602)
yading@10 164 #define FIX_1_501321110 FIX(1.501321110)
yading@10 165 #define FIX_1_847759065 FIX(1.847759065)
yading@10 166 #define FIX_1_961570560 FIX(1.961570560)
yading@10 167 #define FIX_2_053119869 FIX(2.053119869)
yading@10 168 #define FIX_2_562915447 FIX(2.562915447)
yading@10 169 #define FIX_3_072711026 FIX(3.072711026)
yading@10 170 #endif
yading@10 171
yading@10 172
yading@10 173 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
yading@10 174 * For 8-bit samples with the recommended scaling, all the variable
yading@10 175 * and constant values involved are no more than 16 bits wide, so a
yading@10 176 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
yading@10 177 * For 12-bit samples, a full 32-bit multiplication will be needed.
yading@10 178 */
yading@10 179
yading@10 180 #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
yading@10 181 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
yading@10 182 #else
yading@10 183 #define MULTIPLY(var,const) ((var) * (const))
yading@10 184 #endif
yading@10 185
yading@10 186
yading@10 187 static av_always_inline void FUNC(row_fdct)(int16_t *data)
yading@10 188 {
yading@10 189 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 190 int tmp10, tmp11, tmp12, tmp13;
yading@10 191 int z1, z2, z3, z4, z5;
yading@10 192 int16_t *dataptr;
yading@10 193 int ctr;
yading@10 194
yading@10 195 /* Pass 1: process rows. */
yading@10 196 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
yading@10 197 /* furthermore, we scale the results by 2**PASS1_BITS. */
yading@10 198
yading@10 199 dataptr = data;
yading@10 200 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 201 tmp0 = dataptr[0] + dataptr[7];
yading@10 202 tmp7 = dataptr[0] - dataptr[7];
yading@10 203 tmp1 = dataptr[1] + dataptr[6];
yading@10 204 tmp6 = dataptr[1] - dataptr[6];
yading@10 205 tmp2 = dataptr[2] + dataptr[5];
yading@10 206 tmp5 = dataptr[2] - dataptr[5];
yading@10 207 tmp3 = dataptr[3] + dataptr[4];
yading@10 208 tmp4 = dataptr[3] - dataptr[4];
yading@10 209
yading@10 210 /* Even part per LL&M figure 1 --- note that published figure is faulty;
yading@10 211 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
yading@10 212 */
yading@10 213
yading@10 214 tmp10 = tmp0 + tmp3;
yading@10 215 tmp13 = tmp0 - tmp3;
yading@10 216 tmp11 = tmp1 + tmp2;
yading@10 217 tmp12 = tmp1 - tmp2;
yading@10 218
yading@10 219 dataptr[0] = (int16_t) ((tmp10 + tmp11) << PASS1_BITS);
yading@10 220 dataptr[4] = (int16_t) ((tmp10 - tmp11) << PASS1_BITS);
yading@10 221
yading@10 222 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
yading@10 223 dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
yading@10 224 CONST_BITS-PASS1_BITS);
yading@10 225 dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
yading@10 226 CONST_BITS-PASS1_BITS);
yading@10 227
yading@10 228 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
yading@10 229 * cK represents cos(K*pi/16).
yading@10 230 * i0..i3 in the paper are tmp4..tmp7 here.
yading@10 231 */
yading@10 232
yading@10 233 z1 = tmp4 + tmp7;
yading@10 234 z2 = tmp5 + tmp6;
yading@10 235 z3 = tmp4 + tmp6;
yading@10 236 z4 = tmp5 + tmp7;
yading@10 237 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
yading@10 238
yading@10 239 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
yading@10 240 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
yading@10 241 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
yading@10 242 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
yading@10 243 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
yading@10 244 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
yading@10 245 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
yading@10 246 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
yading@10 247
yading@10 248 z3 += z5;
yading@10 249 z4 += z5;
yading@10 250
yading@10 251 dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
yading@10 252 dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
yading@10 253 dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
yading@10 254 dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
yading@10 255
yading@10 256 dataptr += DCTSIZE; /* advance pointer to next row */
yading@10 257 }
yading@10 258 }
yading@10 259
yading@10 260 /*
yading@10 261 * Perform the forward DCT on one block of samples.
yading@10 262 */
yading@10 263
yading@10 264 GLOBAL(void)
yading@10 265 FUNC(ff_jpeg_fdct_islow)(int16_t *data)
yading@10 266 {
yading@10 267 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 268 int tmp10, tmp11, tmp12, tmp13;
yading@10 269 int z1, z2, z3, z4, z5;
yading@10 270 int16_t *dataptr;
yading@10 271 int ctr;
yading@10 272
yading@10 273 FUNC(row_fdct)(data);
yading@10 274
yading@10 275 /* Pass 2: process columns.
yading@10 276 * We remove the PASS1_BITS scaling, but leave the results scaled up
yading@10 277 * by an overall factor of 8.
yading@10 278 */
yading@10 279
yading@10 280 dataptr = data;
yading@10 281 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 282 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
yading@10 283 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
yading@10 284 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
yading@10 285 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
yading@10 286 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
yading@10 287 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
yading@10 288 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
yading@10 289 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
yading@10 290
yading@10 291 /* Even part per LL&M figure 1 --- note that published figure is faulty;
yading@10 292 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
yading@10 293 */
yading@10 294
yading@10 295 tmp10 = tmp0 + tmp3;
yading@10 296 tmp13 = tmp0 - tmp3;
yading@10 297 tmp11 = tmp1 + tmp2;
yading@10 298 tmp12 = tmp1 - tmp2;
yading@10 299
yading@10 300 dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
yading@10 301 dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
yading@10 302
yading@10 303 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
yading@10 304 dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
yading@10 305 CONST_BITS + OUT_SHIFT);
yading@10 306 dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
yading@10 307 CONST_BITS + OUT_SHIFT);
yading@10 308
yading@10 309 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
yading@10 310 * cK represents cos(K*pi/16).
yading@10 311 * i0..i3 in the paper are tmp4..tmp7 here.
yading@10 312 */
yading@10 313
yading@10 314 z1 = tmp4 + tmp7;
yading@10 315 z2 = tmp5 + tmp6;
yading@10 316 z3 = tmp4 + tmp6;
yading@10 317 z4 = tmp5 + tmp7;
yading@10 318 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
yading@10 319
yading@10 320 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
yading@10 321 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
yading@10 322 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
yading@10 323 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
yading@10 324 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
yading@10 325 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
yading@10 326 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
yading@10 327 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
yading@10 328
yading@10 329 z3 += z5;
yading@10 330 z4 += z5;
yading@10 331
yading@10 332 dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT);
yading@10 333 dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT);
yading@10 334 dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT);
yading@10 335 dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT);
yading@10 336
yading@10 337 dataptr++; /* advance pointer to next column */
yading@10 338 }
yading@10 339 }
yading@10 340
yading@10 341 /*
yading@10 342 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
yading@10 343 * on the rows and then, instead of doing even and odd, part on the columns
yading@10 344 * you do even part two times.
yading@10 345 */
yading@10 346 GLOBAL(void)
yading@10 347 FUNC(ff_fdct248_islow)(int16_t *data)
yading@10 348 {
yading@10 349 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 350 int tmp10, tmp11, tmp12, tmp13;
yading@10 351 int z1;
yading@10 352 int16_t *dataptr;
yading@10 353 int ctr;
yading@10 354
yading@10 355 FUNC(row_fdct)(data);
yading@10 356
yading@10 357 /* Pass 2: process columns.
yading@10 358 * We remove the PASS1_BITS scaling, but leave the results scaled up
yading@10 359 * by an overall factor of 8.
yading@10 360 */
yading@10 361
yading@10 362 dataptr = data;
yading@10 363 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 364 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
yading@10 365 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
yading@10 366 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
yading@10 367 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
yading@10 368 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
yading@10 369 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
yading@10 370 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
yading@10 371 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
yading@10 372
yading@10 373 tmp10 = tmp0 + tmp3;
yading@10 374 tmp11 = tmp1 + tmp2;
yading@10 375 tmp12 = tmp1 - tmp2;
yading@10 376 tmp13 = tmp0 - tmp3;
yading@10 377
yading@10 378 dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
yading@10 379 dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
yading@10 380
yading@10 381 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
yading@10 382 dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
yading@10 383 CONST_BITS+OUT_SHIFT);
yading@10 384 dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
yading@10 385 CONST_BITS+OUT_SHIFT);
yading@10 386
yading@10 387 tmp10 = tmp4 + tmp7;
yading@10 388 tmp11 = tmp5 + tmp6;
yading@10 389 tmp12 = tmp5 - tmp6;
yading@10 390 tmp13 = tmp4 - tmp7;
yading@10 391
yading@10 392 dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
yading@10 393 dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
yading@10 394
yading@10 395 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
yading@10 396 dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
yading@10 397 CONST_BITS + OUT_SHIFT);
yading@10 398 dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
yading@10 399 CONST_BITS + OUT_SHIFT);
yading@10 400
yading@10 401 dataptr++; /* advance pointer to next column */
yading@10 402 }
yading@10 403 }