yading@10
|
1 /*
|
yading@10
|
2 * This file is part of the Independent JPEG Group's software.
|
yading@10
|
3 *
|
yading@10
|
4 * The authors make NO WARRANTY or representation, either express or implied,
|
yading@10
|
5 * with respect to this software, its quality, accuracy, merchantability, or
|
yading@10
|
6 * fitness for a particular purpose. This software is provided "AS IS", and
|
yading@10
|
7 * you, its user, assume the entire risk as to its quality and accuracy.
|
yading@10
|
8 *
|
yading@10
|
9 * This software is copyright (C) 1994-1996, Thomas G. Lane.
|
yading@10
|
10 * All Rights Reserved except as specified below.
|
yading@10
|
11 *
|
yading@10
|
12 * Permission is hereby granted to use, copy, modify, and distribute this
|
yading@10
|
13 * software (or portions thereof) for any purpose, without fee, subject to
|
yading@10
|
14 * these conditions:
|
yading@10
|
15 * (1) If any part of the source code for this software is distributed, then
|
yading@10
|
16 * this README file must be included, with this copyright and no-warranty
|
yading@10
|
17 * notice unaltered; and any additions, deletions, or changes to the original
|
yading@10
|
18 * files must be clearly indicated in accompanying documentation.
|
yading@10
|
19 * (2) If only executable code is distributed, then the accompanying
|
yading@10
|
20 * documentation must state that "this software is based in part on the work
|
yading@10
|
21 * of the Independent JPEG Group".
|
yading@10
|
22 * (3) Permission for use of this software is granted only if the user accepts
|
yading@10
|
23 * full responsibility for any undesirable consequences; the authors accept
|
yading@10
|
24 * NO LIABILITY for damages of any kind.
|
yading@10
|
25 *
|
yading@10
|
26 * These conditions apply to any software derived from or based on the IJG
|
yading@10
|
27 * code, not just to the unmodified library. If you use our work, you ought
|
yading@10
|
28 * to acknowledge us.
|
yading@10
|
29 *
|
yading@10
|
30 * Permission is NOT granted for the use of any IJG author's name or company
|
yading@10
|
31 * name in advertising or publicity relating to this software or products
|
yading@10
|
32 * derived from it. This software may be referred to only as "the Independent
|
yading@10
|
33 * JPEG Group's software".
|
yading@10
|
34 *
|
yading@10
|
35 * We specifically permit and encourage the use of this software as the basis
|
yading@10
|
36 * of commercial products, provided that all warranty or liability claims are
|
yading@10
|
37 * assumed by the product vendor.
|
yading@10
|
38 *
|
yading@10
|
39 * This file contains a fast, not so accurate integer implementation of the
|
yading@10
|
40 * forward DCT (Discrete Cosine Transform).
|
yading@10
|
41 *
|
yading@10
|
42 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
yading@10
|
43 * on each column. Direct algorithms are also available, but they are
|
yading@10
|
44 * much more complex and seem not to be any faster when reduced to code.
|
yading@10
|
45 *
|
yading@10
|
46 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
yading@10
|
47 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
yading@10
|
48 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
yading@10
|
49 * JPEG textbook (see REFERENCES section in file README). The following code
|
yading@10
|
50 * is based directly on figure 4-8 in P&M.
|
yading@10
|
51 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
yading@10
|
52 * possible to arrange the computation so that many of the multiplies are
|
yading@10
|
53 * simple scalings of the final outputs. These multiplies can then be
|
yading@10
|
54 * folded into the multiplications or divisions by the JPEG quantization
|
yading@10
|
55 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
yading@10
|
56 * to be done in the DCT itself.
|
yading@10
|
57 * The primary disadvantage of this method is that with fixed-point math,
|
yading@10
|
58 * accuracy is lost due to imprecise representation of the scaled
|
yading@10
|
59 * quantization values. The smaller the quantization table entry, the less
|
yading@10
|
60 * precise the scaled value, so this implementation does worse with high-
|
yading@10
|
61 * quality-setting files than with low-quality ones.
|
yading@10
|
62 */
|
yading@10
|
63
|
yading@10
|
64 /**
|
yading@10
|
65 * @file
|
yading@10
|
66 * Independent JPEG Group's fast AAN dct.
|
yading@10
|
67 */
|
yading@10
|
68
|
yading@10
|
69 #include <stdlib.h>
|
yading@10
|
70 #include <stdio.h>
|
yading@10
|
71 #include "libavutil/common.h"
|
yading@10
|
72 #include "dct.h"
|
yading@10
|
73
|
yading@10
|
74 #define DCTSIZE 8
|
yading@10
|
75 #define GLOBAL(x) x
|
yading@10
|
76 #define RIGHT_SHIFT(x, n) ((x) >> (n))
|
yading@10
|
77
|
yading@10
|
78 /*
|
yading@10
|
79 * This module is specialized to the case DCTSIZE = 8.
|
yading@10
|
80 */
|
yading@10
|
81
|
yading@10
|
82 #if DCTSIZE != 8
|
yading@10
|
83 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
yading@10
|
84 #endif
|
yading@10
|
85
|
yading@10
|
86
|
yading@10
|
87 /* Scaling decisions are generally the same as in the LL&M algorithm;
|
yading@10
|
88 * see jfdctint.c for more details. However, we choose to descale
|
yading@10
|
89 * (right shift) multiplication products as soon as they are formed,
|
yading@10
|
90 * rather than carrying additional fractional bits into subsequent additions.
|
yading@10
|
91 * This compromises accuracy slightly, but it lets us save a few shifts.
|
yading@10
|
92 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
yading@10
|
93 * everywhere except in the multiplications proper; this saves a good deal
|
yading@10
|
94 * of work on 16-bit-int machines.
|
yading@10
|
95 *
|
yading@10
|
96 * Again to save a few shifts, the intermediate results between pass 1 and
|
yading@10
|
97 * pass 2 are not upscaled, but are represented only to integral precision.
|
yading@10
|
98 *
|
yading@10
|
99 * A final compromise is to represent the multiplicative constants to only
|
yading@10
|
100 * 8 fractional bits, rather than 13. This saves some shifting work on some
|
yading@10
|
101 * machines, and may also reduce the cost of multiplication (since there
|
yading@10
|
102 * are fewer one-bits in the constants).
|
yading@10
|
103 */
|
yading@10
|
104
|
yading@10
|
105 #define CONST_BITS 8
|
yading@10
|
106
|
yading@10
|
107
|
yading@10
|
108 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
yading@10
|
109 * causing a lot of useless floating-point operations at run time.
|
yading@10
|
110 * To get around this we use the following pre-calculated constants.
|
yading@10
|
111 * If you change CONST_BITS you may want to add appropriate values.
|
yading@10
|
112 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
yading@10
|
113 */
|
yading@10
|
114
|
yading@10
|
115 #if CONST_BITS == 8
|
yading@10
|
116 #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */
|
yading@10
|
117 #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */
|
yading@10
|
118 #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */
|
yading@10
|
119 #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */
|
yading@10
|
120 #else
|
yading@10
|
121 #define FIX_0_382683433 FIX(0.382683433)
|
yading@10
|
122 #define FIX_0_541196100 FIX(0.541196100)
|
yading@10
|
123 #define FIX_0_707106781 FIX(0.707106781)
|
yading@10
|
124 #define FIX_1_306562965 FIX(1.306562965)
|
yading@10
|
125 #endif
|
yading@10
|
126
|
yading@10
|
127
|
yading@10
|
128 /* We can gain a little more speed, with a further compromise in accuracy,
|
yading@10
|
129 * by omitting the addition in a descaling shift. This yields an incorrectly
|
yading@10
|
130 * rounded result half the time...
|
yading@10
|
131 */
|
yading@10
|
132
|
yading@10
|
133 #ifndef USE_ACCURATE_ROUNDING
|
yading@10
|
134 #undef DESCALE
|
yading@10
|
135 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
yading@10
|
136 #endif
|
yading@10
|
137
|
yading@10
|
138
|
yading@10
|
139 /* Multiply a int16_t variable by an int32_t constant, and immediately
|
yading@10
|
140 * descale to yield a int16_t result.
|
yading@10
|
141 */
|
yading@10
|
142
|
yading@10
|
143 #define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS))
|
yading@10
|
144
|
yading@10
|
145 static av_always_inline void row_fdct(int16_t * data){
|
yading@10
|
146 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
yading@10
|
147 int tmp10, tmp11, tmp12, tmp13;
|
yading@10
|
148 int z1, z2, z3, z4, z5, z11, z13;
|
yading@10
|
149 int16_t *dataptr;
|
yading@10
|
150 int ctr;
|
yading@10
|
151
|
yading@10
|
152 /* Pass 1: process rows. */
|
yading@10
|
153
|
yading@10
|
154 dataptr = data;
|
yading@10
|
155 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
yading@10
|
156 tmp0 = dataptr[0] + dataptr[7];
|
yading@10
|
157 tmp7 = dataptr[0] - dataptr[7];
|
yading@10
|
158 tmp1 = dataptr[1] + dataptr[6];
|
yading@10
|
159 tmp6 = dataptr[1] - dataptr[6];
|
yading@10
|
160 tmp2 = dataptr[2] + dataptr[5];
|
yading@10
|
161 tmp5 = dataptr[2] - dataptr[5];
|
yading@10
|
162 tmp3 = dataptr[3] + dataptr[4];
|
yading@10
|
163 tmp4 = dataptr[3] - dataptr[4];
|
yading@10
|
164
|
yading@10
|
165 /* Even part */
|
yading@10
|
166
|
yading@10
|
167 tmp10 = tmp0 + tmp3; /* phase 2 */
|
yading@10
|
168 tmp13 = tmp0 - tmp3;
|
yading@10
|
169 tmp11 = tmp1 + tmp2;
|
yading@10
|
170 tmp12 = tmp1 - tmp2;
|
yading@10
|
171
|
yading@10
|
172 dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
yading@10
|
173 dataptr[4] = tmp10 - tmp11;
|
yading@10
|
174
|
yading@10
|
175 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
yading@10
|
176 dataptr[2] = tmp13 + z1; /* phase 5 */
|
yading@10
|
177 dataptr[6] = tmp13 - z1;
|
yading@10
|
178
|
yading@10
|
179 /* Odd part */
|
yading@10
|
180
|
yading@10
|
181 tmp10 = tmp4 + tmp5; /* phase 2 */
|
yading@10
|
182 tmp11 = tmp5 + tmp6;
|
yading@10
|
183 tmp12 = tmp6 + tmp7;
|
yading@10
|
184
|
yading@10
|
185 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
yading@10
|
186 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
yading@10
|
187 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
yading@10
|
188 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
yading@10
|
189 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
yading@10
|
190
|
yading@10
|
191 z11 = tmp7 + z3; /* phase 5 */
|
yading@10
|
192 z13 = tmp7 - z3;
|
yading@10
|
193
|
yading@10
|
194 dataptr[5] = z13 + z2; /* phase 6 */
|
yading@10
|
195 dataptr[3] = z13 - z2;
|
yading@10
|
196 dataptr[1] = z11 + z4;
|
yading@10
|
197 dataptr[7] = z11 - z4;
|
yading@10
|
198
|
yading@10
|
199 dataptr += DCTSIZE; /* advance pointer to next row */
|
yading@10
|
200 }
|
yading@10
|
201 }
|
yading@10
|
202
|
yading@10
|
203 /*
|
yading@10
|
204 * Perform the forward DCT on one block of samples.
|
yading@10
|
205 */
|
yading@10
|
206
|
yading@10
|
207 GLOBAL(void)
|
yading@10
|
208 ff_fdct_ifast (int16_t * data)
|
yading@10
|
209 {
|
yading@10
|
210 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
yading@10
|
211 int tmp10, tmp11, tmp12, tmp13;
|
yading@10
|
212 int z1, z2, z3, z4, z5, z11, z13;
|
yading@10
|
213 int16_t *dataptr;
|
yading@10
|
214 int ctr;
|
yading@10
|
215
|
yading@10
|
216 row_fdct(data);
|
yading@10
|
217
|
yading@10
|
218 /* Pass 2: process columns. */
|
yading@10
|
219
|
yading@10
|
220 dataptr = data;
|
yading@10
|
221 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
yading@10
|
222 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
yading@10
|
223 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
yading@10
|
224 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
yading@10
|
225 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
yading@10
|
226 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
yading@10
|
227 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
yading@10
|
228 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
yading@10
|
229 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
yading@10
|
230
|
yading@10
|
231 /* Even part */
|
yading@10
|
232
|
yading@10
|
233 tmp10 = tmp0 + tmp3; /* phase 2 */
|
yading@10
|
234 tmp13 = tmp0 - tmp3;
|
yading@10
|
235 tmp11 = tmp1 + tmp2;
|
yading@10
|
236 tmp12 = tmp1 - tmp2;
|
yading@10
|
237
|
yading@10
|
238 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
yading@10
|
239 dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
yading@10
|
240
|
yading@10
|
241 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
yading@10
|
242 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
yading@10
|
243 dataptr[DCTSIZE*6] = tmp13 - z1;
|
yading@10
|
244
|
yading@10
|
245 /* Odd part */
|
yading@10
|
246
|
yading@10
|
247 tmp10 = tmp4 + tmp5; /* phase 2 */
|
yading@10
|
248 tmp11 = tmp5 + tmp6;
|
yading@10
|
249 tmp12 = tmp6 + tmp7;
|
yading@10
|
250
|
yading@10
|
251 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
yading@10
|
252 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
yading@10
|
253 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
yading@10
|
254 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
yading@10
|
255 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
yading@10
|
256
|
yading@10
|
257 z11 = tmp7 + z3; /* phase 5 */
|
yading@10
|
258 z13 = tmp7 - z3;
|
yading@10
|
259
|
yading@10
|
260 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
yading@10
|
261 dataptr[DCTSIZE*3] = z13 - z2;
|
yading@10
|
262 dataptr[DCTSIZE*1] = z11 + z4;
|
yading@10
|
263 dataptr[DCTSIZE*7] = z11 - z4;
|
yading@10
|
264
|
yading@10
|
265 dataptr++; /* advance pointer to next column */
|
yading@10
|
266 }
|
yading@10
|
267 }
|
yading@10
|
268
|
yading@10
|
269 /*
|
yading@10
|
270 * Perform the forward 2-4-8 DCT on one block of samples.
|
yading@10
|
271 */
|
yading@10
|
272
|
yading@10
|
273 GLOBAL(void)
|
yading@10
|
274 ff_fdct_ifast248 (int16_t * data)
|
yading@10
|
275 {
|
yading@10
|
276 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
yading@10
|
277 int tmp10, tmp11, tmp12, tmp13;
|
yading@10
|
278 int z1;
|
yading@10
|
279 int16_t *dataptr;
|
yading@10
|
280 int ctr;
|
yading@10
|
281
|
yading@10
|
282 row_fdct(data);
|
yading@10
|
283
|
yading@10
|
284 /* Pass 2: process columns. */
|
yading@10
|
285
|
yading@10
|
286 dataptr = data;
|
yading@10
|
287 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
yading@10
|
288 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
|
yading@10
|
289 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
|
yading@10
|
290 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
|
yading@10
|
291 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
|
yading@10
|
292 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
|
yading@10
|
293 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
|
yading@10
|
294 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
|
yading@10
|
295 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
|
yading@10
|
296
|
yading@10
|
297 /* Even part */
|
yading@10
|
298
|
yading@10
|
299 tmp10 = tmp0 + tmp3;
|
yading@10
|
300 tmp11 = tmp1 + tmp2;
|
yading@10
|
301 tmp12 = tmp1 - tmp2;
|
yading@10
|
302 tmp13 = tmp0 - tmp3;
|
yading@10
|
303
|
yading@10
|
304 dataptr[DCTSIZE*0] = tmp10 + tmp11;
|
yading@10
|
305 dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
yading@10
|
306
|
yading@10
|
307 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
|
yading@10
|
308 dataptr[DCTSIZE*2] = tmp13 + z1;
|
yading@10
|
309 dataptr[DCTSIZE*6] = tmp13 - z1;
|
yading@10
|
310
|
yading@10
|
311 tmp10 = tmp4 + tmp7;
|
yading@10
|
312 tmp11 = tmp5 + tmp6;
|
yading@10
|
313 tmp12 = tmp5 - tmp6;
|
yading@10
|
314 tmp13 = tmp4 - tmp7;
|
yading@10
|
315
|
yading@10
|
316 dataptr[DCTSIZE*1] = tmp10 + tmp11;
|
yading@10
|
317 dataptr[DCTSIZE*5] = tmp10 - tmp11;
|
yading@10
|
318
|
yading@10
|
319 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
|
yading@10
|
320 dataptr[DCTSIZE*3] = tmp13 + z1;
|
yading@10
|
321 dataptr[DCTSIZE*7] = tmp13 - z1;
|
yading@10
|
322
|
yading@10
|
323 dataptr++; /* advance pointer to next column */
|
yading@10
|
324 }
|
yading@10
|
325 }
|
yading@10
|
326
|
yading@10
|
327
|
yading@10
|
328 #undef GLOBAL
|
yading@10
|
329 #undef CONST_BITS
|
yading@10
|
330 #undef DESCALE
|
yading@10
|
331 #undef FIX_0_541196100
|
yading@10
|
332 #undef FIX_1_306562965
|