annotate ffmpeg/libavcodec/jfdctfst.c @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * This file is part of the Independent JPEG Group's software.
yading@10 3 *
yading@10 4 * The authors make NO WARRANTY or representation, either express or implied,
yading@10 5 * with respect to this software, its quality, accuracy, merchantability, or
yading@10 6 * fitness for a particular purpose. This software is provided "AS IS", and
yading@10 7 * you, its user, assume the entire risk as to its quality and accuracy.
yading@10 8 *
yading@10 9 * This software is copyright (C) 1994-1996, Thomas G. Lane.
yading@10 10 * All Rights Reserved except as specified below.
yading@10 11 *
yading@10 12 * Permission is hereby granted to use, copy, modify, and distribute this
yading@10 13 * software (or portions thereof) for any purpose, without fee, subject to
yading@10 14 * these conditions:
yading@10 15 * (1) If any part of the source code for this software is distributed, then
yading@10 16 * this README file must be included, with this copyright and no-warranty
yading@10 17 * notice unaltered; and any additions, deletions, or changes to the original
yading@10 18 * files must be clearly indicated in accompanying documentation.
yading@10 19 * (2) If only executable code is distributed, then the accompanying
yading@10 20 * documentation must state that "this software is based in part on the work
yading@10 21 * of the Independent JPEG Group".
yading@10 22 * (3) Permission for use of this software is granted only if the user accepts
yading@10 23 * full responsibility for any undesirable consequences; the authors accept
yading@10 24 * NO LIABILITY for damages of any kind.
yading@10 25 *
yading@10 26 * These conditions apply to any software derived from or based on the IJG
yading@10 27 * code, not just to the unmodified library. If you use our work, you ought
yading@10 28 * to acknowledge us.
yading@10 29 *
yading@10 30 * Permission is NOT granted for the use of any IJG author's name or company
yading@10 31 * name in advertising or publicity relating to this software or products
yading@10 32 * derived from it. This software may be referred to only as "the Independent
yading@10 33 * JPEG Group's software".
yading@10 34 *
yading@10 35 * We specifically permit and encourage the use of this software as the basis
yading@10 36 * of commercial products, provided that all warranty or liability claims are
yading@10 37 * assumed by the product vendor.
yading@10 38 *
yading@10 39 * This file contains a fast, not so accurate integer implementation of the
yading@10 40 * forward DCT (Discrete Cosine Transform).
yading@10 41 *
yading@10 42 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
yading@10 43 * on each column. Direct algorithms are also available, but they are
yading@10 44 * much more complex and seem not to be any faster when reduced to code.
yading@10 45 *
yading@10 46 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
yading@10 47 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
yading@10 48 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
yading@10 49 * JPEG textbook (see REFERENCES section in file README). The following code
yading@10 50 * is based directly on figure 4-8 in P&M.
yading@10 51 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
yading@10 52 * possible to arrange the computation so that many of the multiplies are
yading@10 53 * simple scalings of the final outputs. These multiplies can then be
yading@10 54 * folded into the multiplications or divisions by the JPEG quantization
yading@10 55 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
yading@10 56 * to be done in the DCT itself.
yading@10 57 * The primary disadvantage of this method is that with fixed-point math,
yading@10 58 * accuracy is lost due to imprecise representation of the scaled
yading@10 59 * quantization values. The smaller the quantization table entry, the less
yading@10 60 * precise the scaled value, so this implementation does worse with high-
yading@10 61 * quality-setting files than with low-quality ones.
yading@10 62 */
yading@10 63
yading@10 64 /**
yading@10 65 * @file
yading@10 66 * Independent JPEG Group's fast AAN dct.
yading@10 67 */
yading@10 68
yading@10 69 #include <stdlib.h>
yading@10 70 #include <stdio.h>
yading@10 71 #include "libavutil/common.h"
yading@10 72 #include "dct.h"
yading@10 73
yading@10 74 #define DCTSIZE 8
yading@10 75 #define GLOBAL(x) x
yading@10 76 #define RIGHT_SHIFT(x, n) ((x) >> (n))
yading@10 77
yading@10 78 /*
yading@10 79 * This module is specialized to the case DCTSIZE = 8.
yading@10 80 */
yading@10 81
yading@10 82 #if DCTSIZE != 8
yading@10 83 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
yading@10 84 #endif
yading@10 85
yading@10 86
yading@10 87 /* Scaling decisions are generally the same as in the LL&M algorithm;
yading@10 88 * see jfdctint.c for more details. However, we choose to descale
yading@10 89 * (right shift) multiplication products as soon as they are formed,
yading@10 90 * rather than carrying additional fractional bits into subsequent additions.
yading@10 91 * This compromises accuracy slightly, but it lets us save a few shifts.
yading@10 92 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
yading@10 93 * everywhere except in the multiplications proper; this saves a good deal
yading@10 94 * of work on 16-bit-int machines.
yading@10 95 *
yading@10 96 * Again to save a few shifts, the intermediate results between pass 1 and
yading@10 97 * pass 2 are not upscaled, but are represented only to integral precision.
yading@10 98 *
yading@10 99 * A final compromise is to represent the multiplicative constants to only
yading@10 100 * 8 fractional bits, rather than 13. This saves some shifting work on some
yading@10 101 * machines, and may also reduce the cost of multiplication (since there
yading@10 102 * are fewer one-bits in the constants).
yading@10 103 */
yading@10 104
yading@10 105 #define CONST_BITS 8
yading@10 106
yading@10 107
yading@10 108 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
yading@10 109 * causing a lot of useless floating-point operations at run time.
yading@10 110 * To get around this we use the following pre-calculated constants.
yading@10 111 * If you change CONST_BITS you may want to add appropriate values.
yading@10 112 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
yading@10 113 */
yading@10 114
yading@10 115 #if CONST_BITS == 8
yading@10 116 #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */
yading@10 117 #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */
yading@10 118 #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */
yading@10 119 #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */
yading@10 120 #else
yading@10 121 #define FIX_0_382683433 FIX(0.382683433)
yading@10 122 #define FIX_0_541196100 FIX(0.541196100)
yading@10 123 #define FIX_0_707106781 FIX(0.707106781)
yading@10 124 #define FIX_1_306562965 FIX(1.306562965)
yading@10 125 #endif
yading@10 126
yading@10 127
yading@10 128 /* We can gain a little more speed, with a further compromise in accuracy,
yading@10 129 * by omitting the addition in a descaling shift. This yields an incorrectly
yading@10 130 * rounded result half the time...
yading@10 131 */
yading@10 132
yading@10 133 #ifndef USE_ACCURATE_ROUNDING
yading@10 134 #undef DESCALE
yading@10 135 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
yading@10 136 #endif
yading@10 137
yading@10 138
yading@10 139 /* Multiply a int16_t variable by an int32_t constant, and immediately
yading@10 140 * descale to yield a int16_t result.
yading@10 141 */
yading@10 142
yading@10 143 #define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS))
yading@10 144
yading@10 145 static av_always_inline void row_fdct(int16_t * data){
yading@10 146 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 147 int tmp10, tmp11, tmp12, tmp13;
yading@10 148 int z1, z2, z3, z4, z5, z11, z13;
yading@10 149 int16_t *dataptr;
yading@10 150 int ctr;
yading@10 151
yading@10 152 /* Pass 1: process rows. */
yading@10 153
yading@10 154 dataptr = data;
yading@10 155 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 156 tmp0 = dataptr[0] + dataptr[7];
yading@10 157 tmp7 = dataptr[0] - dataptr[7];
yading@10 158 tmp1 = dataptr[1] + dataptr[6];
yading@10 159 tmp6 = dataptr[1] - dataptr[6];
yading@10 160 tmp2 = dataptr[2] + dataptr[5];
yading@10 161 tmp5 = dataptr[2] - dataptr[5];
yading@10 162 tmp3 = dataptr[3] + dataptr[4];
yading@10 163 tmp4 = dataptr[3] - dataptr[4];
yading@10 164
yading@10 165 /* Even part */
yading@10 166
yading@10 167 tmp10 = tmp0 + tmp3; /* phase 2 */
yading@10 168 tmp13 = tmp0 - tmp3;
yading@10 169 tmp11 = tmp1 + tmp2;
yading@10 170 tmp12 = tmp1 - tmp2;
yading@10 171
yading@10 172 dataptr[0] = tmp10 + tmp11; /* phase 3 */
yading@10 173 dataptr[4] = tmp10 - tmp11;
yading@10 174
yading@10 175 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
yading@10 176 dataptr[2] = tmp13 + z1; /* phase 5 */
yading@10 177 dataptr[6] = tmp13 - z1;
yading@10 178
yading@10 179 /* Odd part */
yading@10 180
yading@10 181 tmp10 = tmp4 + tmp5; /* phase 2 */
yading@10 182 tmp11 = tmp5 + tmp6;
yading@10 183 tmp12 = tmp6 + tmp7;
yading@10 184
yading@10 185 /* The rotator is modified from fig 4-8 to avoid extra negations. */
yading@10 186 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
yading@10 187 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
yading@10 188 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
yading@10 189 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
yading@10 190
yading@10 191 z11 = tmp7 + z3; /* phase 5 */
yading@10 192 z13 = tmp7 - z3;
yading@10 193
yading@10 194 dataptr[5] = z13 + z2; /* phase 6 */
yading@10 195 dataptr[3] = z13 - z2;
yading@10 196 dataptr[1] = z11 + z4;
yading@10 197 dataptr[7] = z11 - z4;
yading@10 198
yading@10 199 dataptr += DCTSIZE; /* advance pointer to next row */
yading@10 200 }
yading@10 201 }
yading@10 202
yading@10 203 /*
yading@10 204 * Perform the forward DCT on one block of samples.
yading@10 205 */
yading@10 206
yading@10 207 GLOBAL(void)
yading@10 208 ff_fdct_ifast (int16_t * data)
yading@10 209 {
yading@10 210 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 211 int tmp10, tmp11, tmp12, tmp13;
yading@10 212 int z1, z2, z3, z4, z5, z11, z13;
yading@10 213 int16_t *dataptr;
yading@10 214 int ctr;
yading@10 215
yading@10 216 row_fdct(data);
yading@10 217
yading@10 218 /* Pass 2: process columns. */
yading@10 219
yading@10 220 dataptr = data;
yading@10 221 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 222 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
yading@10 223 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
yading@10 224 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
yading@10 225 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
yading@10 226 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
yading@10 227 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
yading@10 228 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
yading@10 229 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
yading@10 230
yading@10 231 /* Even part */
yading@10 232
yading@10 233 tmp10 = tmp0 + tmp3; /* phase 2 */
yading@10 234 tmp13 = tmp0 - tmp3;
yading@10 235 tmp11 = tmp1 + tmp2;
yading@10 236 tmp12 = tmp1 - tmp2;
yading@10 237
yading@10 238 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
yading@10 239 dataptr[DCTSIZE*4] = tmp10 - tmp11;
yading@10 240
yading@10 241 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
yading@10 242 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
yading@10 243 dataptr[DCTSIZE*6] = tmp13 - z1;
yading@10 244
yading@10 245 /* Odd part */
yading@10 246
yading@10 247 tmp10 = tmp4 + tmp5; /* phase 2 */
yading@10 248 tmp11 = tmp5 + tmp6;
yading@10 249 tmp12 = tmp6 + tmp7;
yading@10 250
yading@10 251 /* The rotator is modified from fig 4-8 to avoid extra negations. */
yading@10 252 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
yading@10 253 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
yading@10 254 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
yading@10 255 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
yading@10 256
yading@10 257 z11 = tmp7 + z3; /* phase 5 */
yading@10 258 z13 = tmp7 - z3;
yading@10 259
yading@10 260 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
yading@10 261 dataptr[DCTSIZE*3] = z13 - z2;
yading@10 262 dataptr[DCTSIZE*1] = z11 + z4;
yading@10 263 dataptr[DCTSIZE*7] = z11 - z4;
yading@10 264
yading@10 265 dataptr++; /* advance pointer to next column */
yading@10 266 }
yading@10 267 }
yading@10 268
yading@10 269 /*
yading@10 270 * Perform the forward 2-4-8 DCT on one block of samples.
yading@10 271 */
yading@10 272
yading@10 273 GLOBAL(void)
yading@10 274 ff_fdct_ifast248 (int16_t * data)
yading@10 275 {
yading@10 276 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
yading@10 277 int tmp10, tmp11, tmp12, tmp13;
yading@10 278 int z1;
yading@10 279 int16_t *dataptr;
yading@10 280 int ctr;
yading@10 281
yading@10 282 row_fdct(data);
yading@10 283
yading@10 284 /* Pass 2: process columns. */
yading@10 285
yading@10 286 dataptr = data;
yading@10 287 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
yading@10 288 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
yading@10 289 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
yading@10 290 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
yading@10 291 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
yading@10 292 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
yading@10 293 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
yading@10 294 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
yading@10 295 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
yading@10 296
yading@10 297 /* Even part */
yading@10 298
yading@10 299 tmp10 = tmp0 + tmp3;
yading@10 300 tmp11 = tmp1 + tmp2;
yading@10 301 tmp12 = tmp1 - tmp2;
yading@10 302 tmp13 = tmp0 - tmp3;
yading@10 303
yading@10 304 dataptr[DCTSIZE*0] = tmp10 + tmp11;
yading@10 305 dataptr[DCTSIZE*4] = tmp10 - tmp11;
yading@10 306
yading@10 307 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
yading@10 308 dataptr[DCTSIZE*2] = tmp13 + z1;
yading@10 309 dataptr[DCTSIZE*6] = tmp13 - z1;
yading@10 310
yading@10 311 tmp10 = tmp4 + tmp7;
yading@10 312 tmp11 = tmp5 + tmp6;
yading@10 313 tmp12 = tmp5 - tmp6;
yading@10 314 tmp13 = tmp4 - tmp7;
yading@10 315
yading@10 316 dataptr[DCTSIZE*1] = tmp10 + tmp11;
yading@10 317 dataptr[DCTSIZE*5] = tmp10 - tmp11;
yading@10 318
yading@10 319 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
yading@10 320 dataptr[DCTSIZE*3] = tmp13 + z1;
yading@10 321 dataptr[DCTSIZE*7] = tmp13 - z1;
yading@10 322
yading@10 323 dataptr++; /* advance pointer to next column */
yading@10 324 }
yading@10 325 }
yading@10 326
yading@10 327
yading@10 328 #undef GLOBAL
yading@10 329 #undef CONST_BITS
yading@10 330 #undef DESCALE
yading@10 331 #undef FIX_0_541196100
yading@10 332 #undef FIX_1_306562965