annotate ffmpeg/libavcodec/aacpsy.c @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * AAC encoder psychoacoustic model
yading@10 3 * Copyright (C) 2008 Konstantin Shishkov
yading@10 4 *
yading@10 5 * This file is part of FFmpeg.
yading@10 6 *
yading@10 7 * FFmpeg is free software; you can redistribute it and/or
yading@10 8 * modify it under the terms of the GNU Lesser General Public
yading@10 9 * License as published by the Free Software Foundation; either
yading@10 10 * version 2.1 of the License, or (at your option) any later version.
yading@10 11 *
yading@10 12 * FFmpeg is distributed in the hope that it will be useful,
yading@10 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
yading@10 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
yading@10 15 * Lesser General Public License for more details.
yading@10 16 *
yading@10 17 * You should have received a copy of the GNU Lesser General Public
yading@10 18 * License along with FFmpeg; if not, write to the Free Software
yading@10 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
yading@10 20 */
yading@10 21
yading@10 22 /**
yading@10 23 * @file
yading@10 24 * AAC encoder psychoacoustic model
yading@10 25 */
yading@10 26
yading@10 27 #include "libavutil/libm.h"
yading@10 28
yading@10 29 #include "avcodec.h"
yading@10 30 #include "aactab.h"
yading@10 31 #include "psymodel.h"
yading@10 32
yading@10 33 /***********************************
yading@10 34 * TODOs:
yading@10 35 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
yading@10 36 * control quality for quality-based output
yading@10 37 **********************************/
yading@10 38
yading@10 39 /**
yading@10 40 * constants for 3GPP AAC psychoacoustic model
yading@10 41 * @{
yading@10 42 */
yading@10 43 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
yading@10 44 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
yading@10 45 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
yading@10 46 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
yading@10 47 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
yading@10 48 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
yading@10 49 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
yading@10 50 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
yading@10 51 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
yading@10 52 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
yading@10 53 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
yading@10 54 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
yading@10 55
yading@10 56 #define PSY_3GPP_RPEMIN 0.01f
yading@10 57 #define PSY_3GPP_RPELEV 2.0f
yading@10 58
yading@10 59 #define PSY_3GPP_C1 3.0f /* log2(8) */
yading@10 60 #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
yading@10 61 #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
yading@10 62
yading@10 63 #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
yading@10 64 #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
yading@10 65
yading@10 66 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
yading@10 67 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
yading@10 68 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
yading@10 69 #define PSY_3GPP_SAVE_ADD_S -0.75f
yading@10 70 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
yading@10 71 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
yading@10 72 #define PSY_3GPP_SPEND_ADD_L -0.35f
yading@10 73 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
yading@10 74 #define PSY_3GPP_CLIP_LO_L 0.2f
yading@10 75 #define PSY_3GPP_CLIP_LO_S 0.2f
yading@10 76 #define PSY_3GPP_CLIP_HI_L 0.95f
yading@10 77 #define PSY_3GPP_CLIP_HI_S 0.75f
yading@10 78
yading@10 79 #define PSY_3GPP_AH_THR_LONG 0.5f
yading@10 80 #define PSY_3GPP_AH_THR_SHORT 0.63f
yading@10 81
yading@10 82 enum {
yading@10 83 PSY_3GPP_AH_NONE,
yading@10 84 PSY_3GPP_AH_INACTIVE,
yading@10 85 PSY_3GPP_AH_ACTIVE
yading@10 86 };
yading@10 87
yading@10 88 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
yading@10 89
yading@10 90 /* LAME psy model constants */
yading@10 91 #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
yading@10 92 #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
yading@10 93 #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
yading@10 94 #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
yading@10 95 #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
yading@10 96
yading@10 97 /**
yading@10 98 * @}
yading@10 99 */
yading@10 100
yading@10 101 /**
yading@10 102 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
yading@10 103 */
yading@10 104 typedef struct AacPsyBand{
yading@10 105 float energy; ///< band energy
yading@10 106 float thr; ///< energy threshold
yading@10 107 float thr_quiet; ///< threshold in quiet
yading@10 108 float nz_lines; ///< number of non-zero spectral lines
yading@10 109 float active_lines; ///< number of active spectral lines
yading@10 110 float pe; ///< perceptual entropy
yading@10 111 float pe_const; ///< constant part of the PE calculation
yading@10 112 float norm_fac; ///< normalization factor for linearization
yading@10 113 int avoid_holes; ///< hole avoidance flag
yading@10 114 }AacPsyBand;
yading@10 115
yading@10 116 /**
yading@10 117 * single/pair channel context for psychoacoustic model
yading@10 118 */
yading@10 119 typedef struct AacPsyChannel{
yading@10 120 AacPsyBand band[128]; ///< bands information
yading@10 121 AacPsyBand prev_band[128]; ///< bands information from the previous frame
yading@10 122
yading@10 123 float win_energy; ///< sliding average of channel energy
yading@10 124 float iir_state[2]; ///< hi-pass IIR filter state
yading@10 125 uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
yading@10 126 enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
yading@10 127 /* LAME psy model specific members */
yading@10 128 float attack_threshold; ///< attack threshold for this channel
yading@10 129 float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
yading@10 130 int prev_attack; ///< attack value for the last short block in the previous sequence
yading@10 131 }AacPsyChannel;
yading@10 132
yading@10 133 /**
yading@10 134 * psychoacoustic model frame type-dependent coefficients
yading@10 135 */
yading@10 136 typedef struct AacPsyCoeffs{
yading@10 137 float ath; ///< absolute threshold of hearing per bands
yading@10 138 float barks; ///< Bark value for each spectral band in long frame
yading@10 139 float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
yading@10 140 float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
yading@10 141 float min_snr; ///< minimal SNR
yading@10 142 }AacPsyCoeffs;
yading@10 143
yading@10 144 /**
yading@10 145 * 3GPP TS26.403-inspired psychoacoustic model specific data
yading@10 146 */
yading@10 147 typedef struct AacPsyContext{
yading@10 148 int chan_bitrate; ///< bitrate per channel
yading@10 149 int frame_bits; ///< average bits per frame
yading@10 150 int fill_level; ///< bit reservoir fill level
yading@10 151 struct {
yading@10 152 float min; ///< minimum allowed PE for bit factor calculation
yading@10 153 float max; ///< maximum allowed PE for bit factor calculation
yading@10 154 float previous; ///< allowed PE of the previous frame
yading@10 155 float correction; ///< PE correction factor
yading@10 156 } pe;
yading@10 157 AacPsyCoeffs psy_coef[2][64];
yading@10 158 AacPsyChannel *ch;
yading@10 159 }AacPsyContext;
yading@10 160
yading@10 161 /**
yading@10 162 * LAME psy model preset struct
yading@10 163 */
yading@10 164 typedef struct {
yading@10 165 int quality; ///< Quality to map the rest of the vaules to.
yading@10 166 /* This is overloaded to be both kbps per channel in ABR mode, and
yading@10 167 * requested quality in constant quality mode.
yading@10 168 */
yading@10 169 float st_lrm; ///< short threshold for L, R, and M channels
yading@10 170 } PsyLamePreset;
yading@10 171
yading@10 172 /**
yading@10 173 * LAME psy model preset table for ABR
yading@10 174 */
yading@10 175 static const PsyLamePreset psy_abr_map[] = {
yading@10 176 /* TODO: Tuning. These were taken from LAME. */
yading@10 177 /* kbps/ch st_lrm */
yading@10 178 { 8, 6.60},
yading@10 179 { 16, 6.60},
yading@10 180 { 24, 6.60},
yading@10 181 { 32, 6.60},
yading@10 182 { 40, 6.60},
yading@10 183 { 48, 6.60},
yading@10 184 { 56, 6.60},
yading@10 185 { 64, 6.40},
yading@10 186 { 80, 6.00},
yading@10 187 { 96, 5.60},
yading@10 188 {112, 5.20},
yading@10 189 {128, 5.20},
yading@10 190 {160, 5.20}
yading@10 191 };
yading@10 192
yading@10 193 /**
yading@10 194 * LAME psy model preset table for constant quality
yading@10 195 */
yading@10 196 static const PsyLamePreset psy_vbr_map[] = {
yading@10 197 /* vbr_q st_lrm */
yading@10 198 { 0, 4.20},
yading@10 199 { 1, 4.20},
yading@10 200 { 2, 4.20},
yading@10 201 { 3, 4.20},
yading@10 202 { 4, 4.20},
yading@10 203 { 5, 4.20},
yading@10 204 { 6, 4.20},
yading@10 205 { 7, 4.20},
yading@10 206 { 8, 4.20},
yading@10 207 { 9, 4.20},
yading@10 208 {10, 4.20}
yading@10 209 };
yading@10 210
yading@10 211 /**
yading@10 212 * LAME psy model FIR coefficient table
yading@10 213 */
yading@10 214 static const float psy_fir_coeffs[] = {
yading@10 215 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
yading@10 216 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
yading@10 217 -5.52212e-17 * 2, -0.313819 * 2
yading@10 218 };
yading@10 219
yading@10 220 #if ARCH_MIPS
yading@10 221 # include "mips/aacpsy_mips.h"
yading@10 222 #endif /* ARCH_MIPS */
yading@10 223
yading@10 224 /**
yading@10 225 * Calculate the ABR attack threshold from the above LAME psymodel table.
yading@10 226 */
yading@10 227 static float lame_calc_attack_threshold(int bitrate)
yading@10 228 {
yading@10 229 /* Assume max bitrate to start with */
yading@10 230 int lower_range = 12, upper_range = 12;
yading@10 231 int lower_range_kbps = psy_abr_map[12].quality;
yading@10 232 int upper_range_kbps = psy_abr_map[12].quality;
yading@10 233 int i;
yading@10 234
yading@10 235 /* Determine which bitrates the value specified falls between.
yading@10 236 * If the loop ends without breaking our above assumption of 320kbps was correct.
yading@10 237 */
yading@10 238 for (i = 1; i < 13; i++) {
yading@10 239 if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
yading@10 240 upper_range = i;
yading@10 241 upper_range_kbps = psy_abr_map[i ].quality;
yading@10 242 lower_range = i - 1;
yading@10 243 lower_range_kbps = psy_abr_map[i - 1].quality;
yading@10 244 break; /* Upper range found */
yading@10 245 }
yading@10 246 }
yading@10 247
yading@10 248 /* Determine which range the value specified is closer to */
yading@10 249 if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
yading@10 250 return psy_abr_map[lower_range].st_lrm;
yading@10 251 return psy_abr_map[upper_range].st_lrm;
yading@10 252 }
yading@10 253
yading@10 254 /**
yading@10 255 * LAME psy model specific initialization
yading@10 256 */
yading@10 257 static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) {
yading@10 258 int i, j;
yading@10 259
yading@10 260 for (i = 0; i < avctx->channels; i++) {
yading@10 261 AacPsyChannel *pch = &ctx->ch[i];
yading@10 262
yading@10 263 if (avctx->flags & CODEC_FLAG_QSCALE)
yading@10 264 pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
yading@10 265 else
yading@10 266 pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
yading@10 267
yading@10 268 for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
yading@10 269 pch->prev_energy_subshort[j] = 10.0f;
yading@10 270 }
yading@10 271 }
yading@10 272
yading@10 273 /**
yading@10 274 * Calculate Bark value for given line.
yading@10 275 */
yading@10 276 static av_cold float calc_bark(float f)
yading@10 277 {
yading@10 278 return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
yading@10 279 }
yading@10 280
yading@10 281 #define ATH_ADD 4
yading@10 282 /**
yading@10 283 * Calculate ATH value for given frequency.
yading@10 284 * Borrowed from Lame.
yading@10 285 */
yading@10 286 static av_cold float ath(float f, float add)
yading@10 287 {
yading@10 288 f /= 1000.0f;
yading@10 289 return 3.64 * pow(f, -0.8)
yading@10 290 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
yading@10 291 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
yading@10 292 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
yading@10 293 }
yading@10 294
yading@10 295 static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
yading@10 296 AacPsyContext *pctx;
yading@10 297 float bark;
yading@10 298 int i, j, g, start;
yading@10 299 float prev, minscale, minath, minsnr, pe_min;
yading@10 300 const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
yading@10 301 const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx);
yading@10 302 const float num_bark = calc_bark((float)bandwidth);
yading@10 303
yading@10 304 ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
yading@10 305 pctx = (AacPsyContext*) ctx->model_priv_data;
yading@10 306
yading@10 307 pctx->chan_bitrate = chan_bitrate;
yading@10 308 pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
yading@10 309 pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
yading@10 310 pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
yading@10 311 ctx->bitres.size = 6144 - pctx->frame_bits;
yading@10 312 ctx->bitres.size -= ctx->bitres.size % 8;
yading@10 313 pctx->fill_level = ctx->bitres.size;
yading@10 314 minath = ath(3410, ATH_ADD);
yading@10 315 for (j = 0; j < 2; j++) {
yading@10 316 AacPsyCoeffs *coeffs = pctx->psy_coef[j];
yading@10 317 const uint8_t *band_sizes = ctx->bands[j];
yading@10 318 float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
yading@10 319 float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f);
yading@10 320 /* reference encoder uses 2.4% here instead of 60% like the spec says */
yading@10 321 float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
yading@10 322 float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
yading@10 323 /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
yading@10 324 float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
yading@10 325
yading@10 326 i = 0;
yading@10 327 prev = 0.0;
yading@10 328 for (g = 0; g < ctx->num_bands[j]; g++) {
yading@10 329 i += band_sizes[g];
yading@10 330 bark = calc_bark((i-1) * line_to_frequency);
yading@10 331 coeffs[g].barks = (bark + prev) / 2.0;
yading@10 332 prev = bark;
yading@10 333 }
yading@10 334 for (g = 0; g < ctx->num_bands[j] - 1; g++) {
yading@10 335 AacPsyCoeffs *coeff = &coeffs[g];
yading@10 336 float bark_width = coeffs[g+1].barks - coeffs->barks;
yading@10 337 coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
yading@10 338 coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
yading@10 339 coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
yading@10 340 coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
yading@10 341 pe_min = bark_pe * bark_width;
yading@10 342 minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
yading@10 343 coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
yading@10 344 }
yading@10 345 start = 0;
yading@10 346 for (g = 0; g < ctx->num_bands[j]; g++) {
yading@10 347 minscale = ath(start * line_to_frequency, ATH_ADD);
yading@10 348 for (i = 1; i < band_sizes[g]; i++)
yading@10 349 minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
yading@10 350 coeffs[g].ath = minscale - minath;
yading@10 351 start += band_sizes[g];
yading@10 352 }
yading@10 353 }
yading@10 354
yading@10 355 pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels);
yading@10 356
yading@10 357 lame_window_init(pctx, ctx->avctx);
yading@10 358
yading@10 359 return 0;
yading@10 360 }
yading@10 361
yading@10 362 /**
yading@10 363 * IIR filter used in block switching decision
yading@10 364 */
yading@10 365 static float iir_filter(int in, float state[2])
yading@10 366 {
yading@10 367 float ret;
yading@10 368
yading@10 369 ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
yading@10 370 state[0] = in;
yading@10 371 state[1] = ret;
yading@10 372 return ret;
yading@10 373 }
yading@10 374
yading@10 375 /**
yading@10 376 * window grouping information stored as bits (0 - new group, 1 - group continues)
yading@10 377 */
yading@10 378 static const uint8_t window_grouping[9] = {
yading@10 379 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
yading@10 380 };
yading@10 381
yading@10 382 /**
yading@10 383 * Tell encoder which window types to use.
yading@10 384 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
yading@10 385 */
yading@10 386 static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
yading@10 387 const int16_t *audio,
yading@10 388 const int16_t *la,
yading@10 389 int channel, int prev_type)
yading@10 390 {
yading@10 391 int i, j;
yading@10 392 int br = ctx->avctx->bit_rate / ctx->avctx->channels;
yading@10 393 int attack_ratio = br <= 16000 ? 18 : 10;
yading@10 394 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
yading@10 395 AacPsyChannel *pch = &pctx->ch[channel];
yading@10 396 uint8_t grouping = 0;
yading@10 397 int next_type = pch->next_window_seq;
yading@10 398 FFPsyWindowInfo wi = { { 0 } };
yading@10 399
yading@10 400 if (la) {
yading@10 401 float s[8], v;
yading@10 402 int switch_to_eight = 0;
yading@10 403 float sum = 0.0, sum2 = 0.0;
yading@10 404 int attack_n = 0;
yading@10 405 int stay_short = 0;
yading@10 406 for (i = 0; i < 8; i++) {
yading@10 407 for (j = 0; j < 128; j++) {
yading@10 408 v = iir_filter(la[i*128+j], pch->iir_state);
yading@10 409 sum += v*v;
yading@10 410 }
yading@10 411 s[i] = sum;
yading@10 412 sum2 += sum;
yading@10 413 }
yading@10 414 for (i = 0; i < 8; i++) {
yading@10 415 if (s[i] > pch->win_energy * attack_ratio) {
yading@10 416 attack_n = i + 1;
yading@10 417 switch_to_eight = 1;
yading@10 418 break;
yading@10 419 }
yading@10 420 }
yading@10 421 pch->win_energy = pch->win_energy*7/8 + sum2/64;
yading@10 422
yading@10 423 wi.window_type[1] = prev_type;
yading@10 424 switch (prev_type) {
yading@10 425 case ONLY_LONG_SEQUENCE:
yading@10 426 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
yading@10 427 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
yading@10 428 break;
yading@10 429 case LONG_START_SEQUENCE:
yading@10 430 wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
yading@10 431 grouping = pch->next_grouping;
yading@10 432 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
yading@10 433 break;
yading@10 434 case LONG_STOP_SEQUENCE:
yading@10 435 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
yading@10 436 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
yading@10 437 break;
yading@10 438 case EIGHT_SHORT_SEQUENCE:
yading@10 439 stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
yading@10 440 wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
yading@10 441 grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
yading@10 442 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
yading@10 443 break;
yading@10 444 }
yading@10 445
yading@10 446 pch->next_grouping = window_grouping[attack_n];
yading@10 447 pch->next_window_seq = next_type;
yading@10 448 } else {
yading@10 449 for (i = 0; i < 3; i++)
yading@10 450 wi.window_type[i] = prev_type;
yading@10 451 grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
yading@10 452 }
yading@10 453
yading@10 454 wi.window_shape = 1;
yading@10 455 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
yading@10 456 wi.num_windows = 1;
yading@10 457 wi.grouping[0] = 1;
yading@10 458 } else {
yading@10 459 int lastgrp = 0;
yading@10 460 wi.num_windows = 8;
yading@10 461 for (i = 0; i < 8; i++) {
yading@10 462 if (!((grouping >> i) & 1))
yading@10 463 lastgrp = i;
yading@10 464 wi.grouping[lastgrp]++;
yading@10 465 }
yading@10 466 }
yading@10 467
yading@10 468 return wi;
yading@10 469 }
yading@10 470
yading@10 471 /* 5.6.1.2 "Calculation of Bit Demand" */
yading@10 472 static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
yading@10 473 int short_window)
yading@10 474 {
yading@10 475 const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
yading@10 476 const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
yading@10 477 const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
yading@10 478 const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
yading@10 479 const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
yading@10 480 const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
yading@10 481 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
yading@10 482
yading@10 483 ctx->fill_level += ctx->frame_bits - bits;
yading@10 484 ctx->fill_level = av_clip(ctx->fill_level, 0, size);
yading@10 485 fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
yading@10 486 clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
yading@10 487 bit_save = (fill_level + bitsave_add) * bitsave_slope;
yading@10 488 assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
yading@10 489 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
yading@10 490 assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
yading@10 491 /* The bit factor graph in the spec is obviously incorrect.
yading@10 492 * bit_spend + ((bit_spend - bit_spend))...
yading@10 493 * The reference encoder subtracts everything from 1, but also seems incorrect.
yading@10 494 * 1 - bit_save + ((bit_spend + bit_save))...
yading@10 495 * Hopefully below is correct.
yading@10 496 */
yading@10 497 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
yading@10 498 /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
yading@10 499 ctx->pe.max = FFMAX(pe, ctx->pe.max);
yading@10 500 ctx->pe.min = FFMIN(pe, ctx->pe.min);
yading@10 501
yading@10 502 return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
yading@10 503 }
yading@10 504
yading@10 505 static float calc_pe_3gpp(AacPsyBand *band)
yading@10 506 {
yading@10 507 float pe, a;
yading@10 508
yading@10 509 band->pe = 0.0f;
yading@10 510 band->pe_const = 0.0f;
yading@10 511 band->active_lines = 0.0f;
yading@10 512 if (band->energy > band->thr) {
yading@10 513 a = log2f(band->energy);
yading@10 514 pe = a - log2f(band->thr);
yading@10 515 band->active_lines = band->nz_lines;
yading@10 516 if (pe < PSY_3GPP_C1) {
yading@10 517 pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
yading@10 518 a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
yading@10 519 band->active_lines *= PSY_3GPP_C3;
yading@10 520 }
yading@10 521 band->pe = pe * band->nz_lines;
yading@10 522 band->pe_const = a * band->nz_lines;
yading@10 523 }
yading@10 524
yading@10 525 return band->pe;
yading@10 526 }
yading@10 527
yading@10 528 static float calc_reduction_3gpp(float a, float desired_pe, float pe,
yading@10 529 float active_lines)
yading@10 530 {
yading@10 531 float thr_avg, reduction;
yading@10 532
yading@10 533 if(active_lines == 0.0)
yading@10 534 return 0;
yading@10 535
yading@10 536 thr_avg = exp2f((a - pe) / (4.0f * active_lines));
yading@10 537 reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
yading@10 538
yading@10 539 return FFMAX(reduction, 0.0f);
yading@10 540 }
yading@10 541
yading@10 542 static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
yading@10 543 float reduction)
yading@10 544 {
yading@10 545 float thr = band->thr;
yading@10 546
yading@10 547 if (band->energy > thr) {
yading@10 548 thr = sqrtf(thr);
yading@10 549 thr = sqrtf(thr) + reduction;
yading@10 550 thr *= thr;
yading@10 551 thr *= thr;
yading@10 552
yading@10 553 /* This deviates from the 3GPP spec to match the reference encoder.
yading@10 554 * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
yading@10 555 * that have hole avoidance on (active or inactive). It always reduces the
yading@10 556 * threshold of bands with hole avoidance off.
yading@10 557 */
yading@10 558 if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
yading@10 559 thr = FFMAX(band->thr, band->energy * min_snr);
yading@10 560 band->avoid_holes = PSY_3GPP_AH_ACTIVE;
yading@10 561 }
yading@10 562 }
yading@10 563
yading@10 564 return thr;
yading@10 565 }
yading@10 566
yading@10 567 #ifndef calc_thr_3gpp
yading@10 568 static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
yading@10 569 const uint8_t *band_sizes, const float *coefs)
yading@10 570 {
yading@10 571 int i, w, g;
yading@10 572 int start = 0;
yading@10 573 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 574 for (g = 0; g < num_bands; g++) {
yading@10 575 AacPsyBand *band = &pch->band[w+g];
yading@10 576
yading@10 577 float form_factor = 0.0f;
yading@10 578 float Temp;
yading@10 579 band->energy = 0.0f;
yading@10 580 for (i = 0; i < band_sizes[g]; i++) {
yading@10 581 band->energy += coefs[start+i] * coefs[start+i];
yading@10 582 form_factor += sqrtf(fabs(coefs[start+i]));
yading@10 583 }
yading@10 584 Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
yading@10 585 band->thr = band->energy * 0.001258925f;
yading@10 586 band->nz_lines = form_factor * sqrtf(Temp);
yading@10 587
yading@10 588 start += band_sizes[g];
yading@10 589 }
yading@10 590 }
yading@10 591 }
yading@10 592 #endif /* calc_thr_3gpp */
yading@10 593
yading@10 594 #ifndef psy_hp_filter
yading@10 595 static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
yading@10 596 {
yading@10 597 int i, j;
yading@10 598 for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
yading@10 599 float sum1, sum2;
yading@10 600 sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
yading@10 601 sum2 = 0.0;
yading@10 602 for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
yading@10 603 sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
yading@10 604 sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
yading@10 605 }
yading@10 606 /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. Tuning this for normalized floats would be difficult. */
yading@10 607 hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
yading@10 608 }
yading@10 609 }
yading@10 610 #endif /* psy_hp_filter */
yading@10 611
yading@10 612 /**
yading@10 613 * Calculate band thresholds as suggested in 3GPP TS26.403
yading@10 614 */
yading@10 615 static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
yading@10 616 const float *coefs, const FFPsyWindowInfo *wi)
yading@10 617 {
yading@10 618 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
yading@10 619 AacPsyChannel *pch = &pctx->ch[channel];
yading@10 620 int i, w, g;
yading@10 621 float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
yading@10 622 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
yading@10 623 float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
yading@10 624 const int num_bands = ctx->num_bands[wi->num_windows == 8];
yading@10 625 const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
yading@10 626 AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
yading@10 627 const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
yading@10 628
yading@10 629 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
yading@10 630 calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs);
yading@10 631
yading@10 632 //modify thresholds and energies - spread, threshold in quiet, pre-echo control
yading@10 633 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 634 AacPsyBand *bands = &pch->band[w];
yading@10 635
yading@10 636 /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
yading@10 637 spread_en[0] = bands[0].energy;
yading@10 638 for (g = 1; g < num_bands; g++) {
yading@10 639 bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
yading@10 640 spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
yading@10 641 }
yading@10 642 for (g = num_bands - 2; g >= 0; g--) {
yading@10 643 bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
yading@10 644 spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
yading@10 645 }
yading@10 646 //5.4.2.4 "Threshold in quiet"
yading@10 647 for (g = 0; g < num_bands; g++) {
yading@10 648 AacPsyBand *band = &bands[g];
yading@10 649
yading@10 650 band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
yading@10 651 //5.4.2.5 "Pre-echo control"
yading@10 652 if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
yading@10 653 band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
yading@10 654 PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
yading@10 655
yading@10 656 /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
yading@10 657 pe += calc_pe_3gpp(band);
yading@10 658 a += band->pe_const;
yading@10 659 active_lines += band->active_lines;
yading@10 660
yading@10 661 /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
yading@10 662 if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
yading@10 663 band->avoid_holes = PSY_3GPP_AH_NONE;
yading@10 664 else
yading@10 665 band->avoid_holes = PSY_3GPP_AH_INACTIVE;
yading@10 666 }
yading@10 667 }
yading@10 668
yading@10 669 /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
yading@10 670 ctx->ch[channel].entropy = pe;
yading@10 671 desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
yading@10 672 desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
yading@10 673 /* NOTE: PE correction is kept simple. During initial testing it had very
yading@10 674 * little effect on the final bitrate. Probably a good idea to come
yading@10 675 * back and do more testing later.
yading@10 676 */
yading@10 677 if (ctx->bitres.bits > 0)
yading@10 678 desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
yading@10 679 0.85f, 1.15f);
yading@10 680 pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
yading@10 681
yading@10 682 if (desired_pe < pe) {
yading@10 683 /* 5.6.1.3.4 "First Estimation of the reduction value" */
yading@10 684 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 685 reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
yading@10 686 pe = 0.0f;
yading@10 687 a = 0.0f;
yading@10 688 active_lines = 0.0f;
yading@10 689 for (g = 0; g < num_bands; g++) {
yading@10 690 AacPsyBand *band = &pch->band[w+g];
yading@10 691
yading@10 692 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
yading@10 693 /* recalculate PE */
yading@10 694 pe += calc_pe_3gpp(band);
yading@10 695 a += band->pe_const;
yading@10 696 active_lines += band->active_lines;
yading@10 697 }
yading@10 698 }
yading@10 699
yading@10 700 /* 5.6.1.3.5 "Second Estimation of the reduction value" */
yading@10 701 for (i = 0; i < 2; i++) {
yading@10 702 float pe_no_ah = 0.0f, desired_pe_no_ah;
yading@10 703 active_lines = a = 0.0f;
yading@10 704 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 705 for (g = 0; g < num_bands; g++) {
yading@10 706 AacPsyBand *band = &pch->band[w+g];
yading@10 707
yading@10 708 if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
yading@10 709 pe_no_ah += band->pe;
yading@10 710 a += band->pe_const;
yading@10 711 active_lines += band->active_lines;
yading@10 712 }
yading@10 713 }
yading@10 714 }
yading@10 715 desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
yading@10 716 if (active_lines > 0.0f)
yading@10 717 reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
yading@10 718
yading@10 719 pe = 0.0f;
yading@10 720 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 721 for (g = 0; g < num_bands; g++) {
yading@10 722 AacPsyBand *band = &pch->band[w+g];
yading@10 723
yading@10 724 if (active_lines > 0.0f)
yading@10 725 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
yading@10 726 pe += calc_pe_3gpp(band);
yading@10 727 band->norm_fac = band->active_lines / band->thr;
yading@10 728 norm_fac += band->norm_fac;
yading@10 729 }
yading@10 730 }
yading@10 731 delta_pe = desired_pe - pe;
yading@10 732 if (fabs(delta_pe) > 0.05f * desired_pe)
yading@10 733 break;
yading@10 734 }
yading@10 735
yading@10 736 if (pe < 1.15f * desired_pe) {
yading@10 737 /* 6.6.1.3.6 "Final threshold modification by linearization" */
yading@10 738 norm_fac = 1.0f / norm_fac;
yading@10 739 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 740 for (g = 0; g < num_bands; g++) {
yading@10 741 AacPsyBand *band = &pch->band[w+g];
yading@10 742
yading@10 743 if (band->active_lines > 0.5f) {
yading@10 744 float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
yading@10 745 float thr = band->thr;
yading@10 746
yading@10 747 thr *= exp2f(delta_sfb_pe / band->active_lines);
yading@10 748 if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
yading@10 749 thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
yading@10 750 band->thr = thr;
yading@10 751 }
yading@10 752 }
yading@10 753 }
yading@10 754 } else {
yading@10 755 /* 5.6.1.3.7 "Further perceptual entropy reduction" */
yading@10 756 g = num_bands;
yading@10 757 while (pe > desired_pe && g--) {
yading@10 758 for (w = 0; w < wi->num_windows*16; w+= 16) {
yading@10 759 AacPsyBand *band = &pch->band[w+g];
yading@10 760 if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
yading@10 761 coeffs[g].min_snr = PSY_SNR_1DB;
yading@10 762 band->thr = band->energy * PSY_SNR_1DB;
yading@10 763 pe += band->active_lines * 1.5f - band->pe;
yading@10 764 }
yading@10 765 }
yading@10 766 }
yading@10 767 /* TODO: allow more holes (unused without mid/side) */
yading@10 768 }
yading@10 769 }
yading@10 770
yading@10 771 for (w = 0; w < wi->num_windows*16; w += 16) {
yading@10 772 for (g = 0; g < num_bands; g++) {
yading@10 773 AacPsyBand *band = &pch->band[w+g];
yading@10 774 FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
yading@10 775
yading@10 776 psy_band->threshold = band->thr;
yading@10 777 psy_band->energy = band->energy;
yading@10 778 }
yading@10 779 }
yading@10 780
yading@10 781 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
yading@10 782 }
yading@10 783
yading@10 784 static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
yading@10 785 const float **coeffs, const FFPsyWindowInfo *wi)
yading@10 786 {
yading@10 787 int ch;
yading@10 788 FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
yading@10 789
yading@10 790 for (ch = 0; ch < group->num_ch; ch++)
yading@10 791 psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
yading@10 792 }
yading@10 793
yading@10 794 static av_cold void psy_3gpp_end(FFPsyContext *apc)
yading@10 795 {
yading@10 796 AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
yading@10 797 av_freep(&pctx->ch);
yading@10 798 av_freep(&apc->model_priv_data);
yading@10 799 }
yading@10 800
yading@10 801 static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
yading@10 802 {
yading@10 803 int blocktype = ONLY_LONG_SEQUENCE;
yading@10 804 if (uselongblock) {
yading@10 805 if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
yading@10 806 blocktype = LONG_STOP_SEQUENCE;
yading@10 807 } else {
yading@10 808 blocktype = EIGHT_SHORT_SEQUENCE;
yading@10 809 if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
yading@10 810 ctx->next_window_seq = LONG_START_SEQUENCE;
yading@10 811 if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
yading@10 812 ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
yading@10 813 }
yading@10 814
yading@10 815 wi->window_type[0] = ctx->next_window_seq;
yading@10 816 ctx->next_window_seq = blocktype;
yading@10 817 }
yading@10 818
yading@10 819 static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
yading@10 820 const float *la, int channel, int prev_type)
yading@10 821 {
yading@10 822 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
yading@10 823 AacPsyChannel *pch = &pctx->ch[channel];
yading@10 824 int grouping = 0;
yading@10 825 int uselongblock = 1;
yading@10 826 int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
yading@10 827 int i;
yading@10 828 FFPsyWindowInfo wi = { { 0 } };
yading@10 829
yading@10 830 if (la) {
yading@10 831 float hpfsmpl[AAC_BLOCK_SIZE_LONG];
yading@10 832 float const *pf = hpfsmpl;
yading@10 833 float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
yading@10 834 float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
yading@10 835 float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
yading@10 836 const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
yading@10 837 int att_sum = 0;
yading@10 838
yading@10 839 /* LAME comment: apply high pass filter of fs/4 */
yading@10 840 psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
yading@10 841
yading@10 842 /* Calculate the energies of each sub-shortblock */
yading@10 843 for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
yading@10 844 energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
yading@10 845 assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
yading@10 846 attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
yading@10 847 energy_short[0] += energy_subshort[i];
yading@10 848 }
yading@10 849
yading@10 850 for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
yading@10 851 float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
yading@10 852 float p = 1.0f;
yading@10 853 for (; pf < pfe; pf++)
yading@10 854 p = FFMAX(p, fabsf(*pf));
yading@10 855 pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
yading@10 856 energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
yading@10 857 /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
yading@10 858 * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
yading@10 859 * (which is what we use here). What the 3 stands for is ambiguous, as it is both
yading@10 860 * number of short blocks, and the number of sub-short blocks.
yading@10 861 * It seems that LAME is comparing each sub-block to sub-block + 1 in the
yading@10 862 * previous block.
yading@10 863 */
yading@10 864 if (p > energy_subshort[i + 1])
yading@10 865 p = p / energy_subshort[i + 1];
yading@10 866 else if (energy_subshort[i + 1] > p * 10.0f)
yading@10 867 p = energy_subshort[i + 1] / (p * 10.0f);
yading@10 868 else
yading@10 869 p = 0.0;
yading@10 870 attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
yading@10 871 }
yading@10 872
yading@10 873 /* compare energy between sub-short blocks */
yading@10 874 for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
yading@10 875 if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
yading@10 876 if (attack_intensity[i] > pch->attack_threshold)
yading@10 877 attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
yading@10 878
yading@10 879 /* should have energy change between short blocks, in order to avoid periodic signals */
yading@10 880 /* Good samples to show the effect are Trumpet test songs */
yading@10 881 /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
yading@10 882 /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
yading@10 883 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
yading@10 884 float const u = energy_short[i - 1];
yading@10 885 float const v = energy_short[i];
yading@10 886 float const m = FFMAX(u, v);
yading@10 887 if (m < 40000) { /* (2) */
yading@10 888 if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
yading@10 889 if (i == 1 && attacks[0] < attacks[i])
yading@10 890 attacks[0] = 0;
yading@10 891 attacks[i] = 0;
yading@10 892 }
yading@10 893 }
yading@10 894 att_sum += attacks[i];
yading@10 895 }
yading@10 896
yading@10 897 if (attacks[0] <= pch->prev_attack)
yading@10 898 attacks[0] = 0;
yading@10 899
yading@10 900 att_sum += attacks[0];
yading@10 901 /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
yading@10 902 if (pch->prev_attack == 3 || att_sum) {
yading@10 903 uselongblock = 0;
yading@10 904
yading@10 905 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
yading@10 906 if (attacks[i] && attacks[i-1])
yading@10 907 attacks[i] = 0;
yading@10 908 }
yading@10 909 } else {
yading@10 910 /* We have no lookahead info, so just use same type as the previous sequence. */
yading@10 911 uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
yading@10 912 }
yading@10 913
yading@10 914 lame_apply_block_type(pch, &wi, uselongblock);
yading@10 915
yading@10 916 wi.window_type[1] = prev_type;
yading@10 917 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
yading@10 918 wi.num_windows = 1;
yading@10 919 wi.grouping[0] = 1;
yading@10 920 if (wi.window_type[0] == LONG_START_SEQUENCE)
yading@10 921 wi.window_shape = 0;
yading@10 922 else
yading@10 923 wi.window_shape = 1;
yading@10 924 } else {
yading@10 925 int lastgrp = 0;
yading@10 926
yading@10 927 wi.num_windows = 8;
yading@10 928 wi.window_shape = 0;
yading@10 929 for (i = 0; i < 8; i++) {
yading@10 930 if (!((pch->next_grouping >> i) & 1))
yading@10 931 lastgrp = i;
yading@10 932 wi.grouping[lastgrp]++;
yading@10 933 }
yading@10 934 }
yading@10 935
yading@10 936 /* Determine grouping, based on the location of the first attack, and save for
yading@10 937 * the next frame.
yading@10 938 * FIXME: Move this to analysis.
yading@10 939 * TODO: Tune groupings depending on attack location
yading@10 940 * TODO: Handle more than one attack in a group
yading@10 941 */
yading@10 942 for (i = 0; i < 9; i++) {
yading@10 943 if (attacks[i]) {
yading@10 944 grouping = i;
yading@10 945 break;
yading@10 946 }
yading@10 947 }
yading@10 948 pch->next_grouping = window_grouping[grouping];
yading@10 949
yading@10 950 pch->prev_attack = attacks[8];
yading@10 951
yading@10 952 return wi;
yading@10 953 }
yading@10 954
yading@10 955 const FFPsyModel ff_aac_psy_model =
yading@10 956 {
yading@10 957 .name = "3GPP TS 26.403-inspired model",
yading@10 958 .init = psy_3gpp_init,
yading@10 959 .window = psy_lame_window,
yading@10 960 .analyze = psy_3gpp_analyze,
yading@10 961 .end = psy_3gpp_end,
yading@10 962 };