yading@10
|
1 /*
|
yading@10
|
2 * AAC encoder psychoacoustic model
|
yading@10
|
3 * Copyright (C) 2008 Konstantin Shishkov
|
yading@10
|
4 *
|
yading@10
|
5 * This file is part of FFmpeg.
|
yading@10
|
6 *
|
yading@10
|
7 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
8 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
9 * License as published by the Free Software Foundation; either
|
yading@10
|
10 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
11 *
|
yading@10
|
12 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
yading@10
|
15 * Lesser General Public License for more details.
|
yading@10
|
16 *
|
yading@10
|
17 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
18 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
20 */
|
yading@10
|
21
|
yading@10
|
22 /**
|
yading@10
|
23 * @file
|
yading@10
|
24 * AAC encoder psychoacoustic model
|
yading@10
|
25 */
|
yading@10
|
26
|
yading@10
|
27 #include "libavutil/libm.h"
|
yading@10
|
28
|
yading@10
|
29 #include "avcodec.h"
|
yading@10
|
30 #include "aactab.h"
|
yading@10
|
31 #include "psymodel.h"
|
yading@10
|
32
|
yading@10
|
33 /***********************************
|
yading@10
|
34 * TODOs:
|
yading@10
|
35 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
|
yading@10
|
36 * control quality for quality-based output
|
yading@10
|
37 **********************************/
|
yading@10
|
38
|
yading@10
|
39 /**
|
yading@10
|
40 * constants for 3GPP AAC psychoacoustic model
|
yading@10
|
41 * @{
|
yading@10
|
42 */
|
yading@10
|
43 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
|
yading@10
|
44 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
|
yading@10
|
45 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
|
yading@10
|
46 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
|
yading@10
|
47 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
|
yading@10
|
48 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
|
yading@10
|
49 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
|
yading@10
|
50 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
|
yading@10
|
51 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
|
yading@10
|
52 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
|
yading@10
|
53 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
|
yading@10
|
54 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
|
yading@10
|
55
|
yading@10
|
56 #define PSY_3GPP_RPEMIN 0.01f
|
yading@10
|
57 #define PSY_3GPP_RPELEV 2.0f
|
yading@10
|
58
|
yading@10
|
59 #define PSY_3GPP_C1 3.0f /* log2(8) */
|
yading@10
|
60 #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
|
yading@10
|
61 #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
|
yading@10
|
62
|
yading@10
|
63 #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
|
yading@10
|
64 #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
|
yading@10
|
65
|
yading@10
|
66 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
|
yading@10
|
67 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
|
yading@10
|
68 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
|
yading@10
|
69 #define PSY_3GPP_SAVE_ADD_S -0.75f
|
yading@10
|
70 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
|
yading@10
|
71 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
|
yading@10
|
72 #define PSY_3GPP_SPEND_ADD_L -0.35f
|
yading@10
|
73 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
|
yading@10
|
74 #define PSY_3GPP_CLIP_LO_L 0.2f
|
yading@10
|
75 #define PSY_3GPP_CLIP_LO_S 0.2f
|
yading@10
|
76 #define PSY_3GPP_CLIP_HI_L 0.95f
|
yading@10
|
77 #define PSY_3GPP_CLIP_HI_S 0.75f
|
yading@10
|
78
|
yading@10
|
79 #define PSY_3GPP_AH_THR_LONG 0.5f
|
yading@10
|
80 #define PSY_3GPP_AH_THR_SHORT 0.63f
|
yading@10
|
81
|
yading@10
|
82 enum {
|
yading@10
|
83 PSY_3GPP_AH_NONE,
|
yading@10
|
84 PSY_3GPP_AH_INACTIVE,
|
yading@10
|
85 PSY_3GPP_AH_ACTIVE
|
yading@10
|
86 };
|
yading@10
|
87
|
yading@10
|
88 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
|
yading@10
|
89
|
yading@10
|
90 /* LAME psy model constants */
|
yading@10
|
91 #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
|
yading@10
|
92 #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
|
yading@10
|
93 #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
|
yading@10
|
94 #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
|
yading@10
|
95 #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
|
yading@10
|
96
|
yading@10
|
97 /**
|
yading@10
|
98 * @}
|
yading@10
|
99 */
|
yading@10
|
100
|
yading@10
|
101 /**
|
yading@10
|
102 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
|
yading@10
|
103 */
|
yading@10
|
104 typedef struct AacPsyBand{
|
yading@10
|
105 float energy; ///< band energy
|
yading@10
|
106 float thr; ///< energy threshold
|
yading@10
|
107 float thr_quiet; ///< threshold in quiet
|
yading@10
|
108 float nz_lines; ///< number of non-zero spectral lines
|
yading@10
|
109 float active_lines; ///< number of active spectral lines
|
yading@10
|
110 float pe; ///< perceptual entropy
|
yading@10
|
111 float pe_const; ///< constant part of the PE calculation
|
yading@10
|
112 float norm_fac; ///< normalization factor for linearization
|
yading@10
|
113 int avoid_holes; ///< hole avoidance flag
|
yading@10
|
114 }AacPsyBand;
|
yading@10
|
115
|
yading@10
|
116 /**
|
yading@10
|
117 * single/pair channel context for psychoacoustic model
|
yading@10
|
118 */
|
yading@10
|
119 typedef struct AacPsyChannel{
|
yading@10
|
120 AacPsyBand band[128]; ///< bands information
|
yading@10
|
121 AacPsyBand prev_band[128]; ///< bands information from the previous frame
|
yading@10
|
122
|
yading@10
|
123 float win_energy; ///< sliding average of channel energy
|
yading@10
|
124 float iir_state[2]; ///< hi-pass IIR filter state
|
yading@10
|
125 uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
|
yading@10
|
126 enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
|
yading@10
|
127 /* LAME psy model specific members */
|
yading@10
|
128 float attack_threshold; ///< attack threshold for this channel
|
yading@10
|
129 float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
|
yading@10
|
130 int prev_attack; ///< attack value for the last short block in the previous sequence
|
yading@10
|
131 }AacPsyChannel;
|
yading@10
|
132
|
yading@10
|
133 /**
|
yading@10
|
134 * psychoacoustic model frame type-dependent coefficients
|
yading@10
|
135 */
|
yading@10
|
136 typedef struct AacPsyCoeffs{
|
yading@10
|
137 float ath; ///< absolute threshold of hearing per bands
|
yading@10
|
138 float barks; ///< Bark value for each spectral band in long frame
|
yading@10
|
139 float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
|
yading@10
|
140 float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
|
yading@10
|
141 float min_snr; ///< minimal SNR
|
yading@10
|
142 }AacPsyCoeffs;
|
yading@10
|
143
|
yading@10
|
144 /**
|
yading@10
|
145 * 3GPP TS26.403-inspired psychoacoustic model specific data
|
yading@10
|
146 */
|
yading@10
|
147 typedef struct AacPsyContext{
|
yading@10
|
148 int chan_bitrate; ///< bitrate per channel
|
yading@10
|
149 int frame_bits; ///< average bits per frame
|
yading@10
|
150 int fill_level; ///< bit reservoir fill level
|
yading@10
|
151 struct {
|
yading@10
|
152 float min; ///< minimum allowed PE for bit factor calculation
|
yading@10
|
153 float max; ///< maximum allowed PE for bit factor calculation
|
yading@10
|
154 float previous; ///< allowed PE of the previous frame
|
yading@10
|
155 float correction; ///< PE correction factor
|
yading@10
|
156 } pe;
|
yading@10
|
157 AacPsyCoeffs psy_coef[2][64];
|
yading@10
|
158 AacPsyChannel *ch;
|
yading@10
|
159 }AacPsyContext;
|
yading@10
|
160
|
yading@10
|
161 /**
|
yading@10
|
162 * LAME psy model preset struct
|
yading@10
|
163 */
|
yading@10
|
164 typedef struct {
|
yading@10
|
165 int quality; ///< Quality to map the rest of the vaules to.
|
yading@10
|
166 /* This is overloaded to be both kbps per channel in ABR mode, and
|
yading@10
|
167 * requested quality in constant quality mode.
|
yading@10
|
168 */
|
yading@10
|
169 float st_lrm; ///< short threshold for L, R, and M channels
|
yading@10
|
170 } PsyLamePreset;
|
yading@10
|
171
|
yading@10
|
172 /**
|
yading@10
|
173 * LAME psy model preset table for ABR
|
yading@10
|
174 */
|
yading@10
|
175 static const PsyLamePreset psy_abr_map[] = {
|
yading@10
|
176 /* TODO: Tuning. These were taken from LAME. */
|
yading@10
|
177 /* kbps/ch st_lrm */
|
yading@10
|
178 { 8, 6.60},
|
yading@10
|
179 { 16, 6.60},
|
yading@10
|
180 { 24, 6.60},
|
yading@10
|
181 { 32, 6.60},
|
yading@10
|
182 { 40, 6.60},
|
yading@10
|
183 { 48, 6.60},
|
yading@10
|
184 { 56, 6.60},
|
yading@10
|
185 { 64, 6.40},
|
yading@10
|
186 { 80, 6.00},
|
yading@10
|
187 { 96, 5.60},
|
yading@10
|
188 {112, 5.20},
|
yading@10
|
189 {128, 5.20},
|
yading@10
|
190 {160, 5.20}
|
yading@10
|
191 };
|
yading@10
|
192
|
yading@10
|
193 /**
|
yading@10
|
194 * LAME psy model preset table for constant quality
|
yading@10
|
195 */
|
yading@10
|
196 static const PsyLamePreset psy_vbr_map[] = {
|
yading@10
|
197 /* vbr_q st_lrm */
|
yading@10
|
198 { 0, 4.20},
|
yading@10
|
199 { 1, 4.20},
|
yading@10
|
200 { 2, 4.20},
|
yading@10
|
201 { 3, 4.20},
|
yading@10
|
202 { 4, 4.20},
|
yading@10
|
203 { 5, 4.20},
|
yading@10
|
204 { 6, 4.20},
|
yading@10
|
205 { 7, 4.20},
|
yading@10
|
206 { 8, 4.20},
|
yading@10
|
207 { 9, 4.20},
|
yading@10
|
208 {10, 4.20}
|
yading@10
|
209 };
|
yading@10
|
210
|
yading@10
|
211 /**
|
yading@10
|
212 * LAME psy model FIR coefficient table
|
yading@10
|
213 */
|
yading@10
|
214 static const float psy_fir_coeffs[] = {
|
yading@10
|
215 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
|
yading@10
|
216 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
|
yading@10
|
217 -5.52212e-17 * 2, -0.313819 * 2
|
yading@10
|
218 };
|
yading@10
|
219
|
yading@10
|
220 #if ARCH_MIPS
|
yading@10
|
221 # include "mips/aacpsy_mips.h"
|
yading@10
|
222 #endif /* ARCH_MIPS */
|
yading@10
|
223
|
yading@10
|
224 /**
|
yading@10
|
225 * Calculate the ABR attack threshold from the above LAME psymodel table.
|
yading@10
|
226 */
|
yading@10
|
227 static float lame_calc_attack_threshold(int bitrate)
|
yading@10
|
228 {
|
yading@10
|
229 /* Assume max bitrate to start with */
|
yading@10
|
230 int lower_range = 12, upper_range = 12;
|
yading@10
|
231 int lower_range_kbps = psy_abr_map[12].quality;
|
yading@10
|
232 int upper_range_kbps = psy_abr_map[12].quality;
|
yading@10
|
233 int i;
|
yading@10
|
234
|
yading@10
|
235 /* Determine which bitrates the value specified falls between.
|
yading@10
|
236 * If the loop ends without breaking our above assumption of 320kbps was correct.
|
yading@10
|
237 */
|
yading@10
|
238 for (i = 1; i < 13; i++) {
|
yading@10
|
239 if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
|
yading@10
|
240 upper_range = i;
|
yading@10
|
241 upper_range_kbps = psy_abr_map[i ].quality;
|
yading@10
|
242 lower_range = i - 1;
|
yading@10
|
243 lower_range_kbps = psy_abr_map[i - 1].quality;
|
yading@10
|
244 break; /* Upper range found */
|
yading@10
|
245 }
|
yading@10
|
246 }
|
yading@10
|
247
|
yading@10
|
248 /* Determine which range the value specified is closer to */
|
yading@10
|
249 if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
|
yading@10
|
250 return psy_abr_map[lower_range].st_lrm;
|
yading@10
|
251 return psy_abr_map[upper_range].st_lrm;
|
yading@10
|
252 }
|
yading@10
|
253
|
yading@10
|
254 /**
|
yading@10
|
255 * LAME psy model specific initialization
|
yading@10
|
256 */
|
yading@10
|
257 static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) {
|
yading@10
|
258 int i, j;
|
yading@10
|
259
|
yading@10
|
260 for (i = 0; i < avctx->channels; i++) {
|
yading@10
|
261 AacPsyChannel *pch = &ctx->ch[i];
|
yading@10
|
262
|
yading@10
|
263 if (avctx->flags & CODEC_FLAG_QSCALE)
|
yading@10
|
264 pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
|
yading@10
|
265 else
|
yading@10
|
266 pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
|
yading@10
|
267
|
yading@10
|
268 for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
|
yading@10
|
269 pch->prev_energy_subshort[j] = 10.0f;
|
yading@10
|
270 }
|
yading@10
|
271 }
|
yading@10
|
272
|
yading@10
|
273 /**
|
yading@10
|
274 * Calculate Bark value for given line.
|
yading@10
|
275 */
|
yading@10
|
276 static av_cold float calc_bark(float f)
|
yading@10
|
277 {
|
yading@10
|
278 return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
|
yading@10
|
279 }
|
yading@10
|
280
|
yading@10
|
281 #define ATH_ADD 4
|
yading@10
|
282 /**
|
yading@10
|
283 * Calculate ATH value for given frequency.
|
yading@10
|
284 * Borrowed from Lame.
|
yading@10
|
285 */
|
yading@10
|
286 static av_cold float ath(float f, float add)
|
yading@10
|
287 {
|
yading@10
|
288 f /= 1000.0f;
|
yading@10
|
289 return 3.64 * pow(f, -0.8)
|
yading@10
|
290 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
|
yading@10
|
291 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
|
yading@10
|
292 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
|
yading@10
|
293 }
|
yading@10
|
294
|
yading@10
|
295 static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
|
yading@10
|
296 AacPsyContext *pctx;
|
yading@10
|
297 float bark;
|
yading@10
|
298 int i, j, g, start;
|
yading@10
|
299 float prev, minscale, minath, minsnr, pe_min;
|
yading@10
|
300 const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
|
yading@10
|
301 const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx);
|
yading@10
|
302 const float num_bark = calc_bark((float)bandwidth);
|
yading@10
|
303
|
yading@10
|
304 ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
|
yading@10
|
305 pctx = (AacPsyContext*) ctx->model_priv_data;
|
yading@10
|
306
|
yading@10
|
307 pctx->chan_bitrate = chan_bitrate;
|
yading@10
|
308 pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
|
yading@10
|
309 pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
|
yading@10
|
310 pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
|
yading@10
|
311 ctx->bitres.size = 6144 - pctx->frame_bits;
|
yading@10
|
312 ctx->bitres.size -= ctx->bitres.size % 8;
|
yading@10
|
313 pctx->fill_level = ctx->bitres.size;
|
yading@10
|
314 minath = ath(3410, ATH_ADD);
|
yading@10
|
315 for (j = 0; j < 2; j++) {
|
yading@10
|
316 AacPsyCoeffs *coeffs = pctx->psy_coef[j];
|
yading@10
|
317 const uint8_t *band_sizes = ctx->bands[j];
|
yading@10
|
318 float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
|
yading@10
|
319 float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f);
|
yading@10
|
320 /* reference encoder uses 2.4% here instead of 60% like the spec says */
|
yading@10
|
321 float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
|
yading@10
|
322 float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
|
yading@10
|
323 /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
|
yading@10
|
324 float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
|
yading@10
|
325
|
yading@10
|
326 i = 0;
|
yading@10
|
327 prev = 0.0;
|
yading@10
|
328 for (g = 0; g < ctx->num_bands[j]; g++) {
|
yading@10
|
329 i += band_sizes[g];
|
yading@10
|
330 bark = calc_bark((i-1) * line_to_frequency);
|
yading@10
|
331 coeffs[g].barks = (bark + prev) / 2.0;
|
yading@10
|
332 prev = bark;
|
yading@10
|
333 }
|
yading@10
|
334 for (g = 0; g < ctx->num_bands[j] - 1; g++) {
|
yading@10
|
335 AacPsyCoeffs *coeff = &coeffs[g];
|
yading@10
|
336 float bark_width = coeffs[g+1].barks - coeffs->barks;
|
yading@10
|
337 coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
|
yading@10
|
338 coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
|
yading@10
|
339 coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
|
yading@10
|
340 coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
|
yading@10
|
341 pe_min = bark_pe * bark_width;
|
yading@10
|
342 minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
|
yading@10
|
343 coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
|
yading@10
|
344 }
|
yading@10
|
345 start = 0;
|
yading@10
|
346 for (g = 0; g < ctx->num_bands[j]; g++) {
|
yading@10
|
347 minscale = ath(start * line_to_frequency, ATH_ADD);
|
yading@10
|
348 for (i = 1; i < band_sizes[g]; i++)
|
yading@10
|
349 minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
|
yading@10
|
350 coeffs[g].ath = minscale - minath;
|
yading@10
|
351 start += band_sizes[g];
|
yading@10
|
352 }
|
yading@10
|
353 }
|
yading@10
|
354
|
yading@10
|
355 pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels);
|
yading@10
|
356
|
yading@10
|
357 lame_window_init(pctx, ctx->avctx);
|
yading@10
|
358
|
yading@10
|
359 return 0;
|
yading@10
|
360 }
|
yading@10
|
361
|
yading@10
|
362 /**
|
yading@10
|
363 * IIR filter used in block switching decision
|
yading@10
|
364 */
|
yading@10
|
365 static float iir_filter(int in, float state[2])
|
yading@10
|
366 {
|
yading@10
|
367 float ret;
|
yading@10
|
368
|
yading@10
|
369 ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
|
yading@10
|
370 state[0] = in;
|
yading@10
|
371 state[1] = ret;
|
yading@10
|
372 return ret;
|
yading@10
|
373 }
|
yading@10
|
374
|
yading@10
|
375 /**
|
yading@10
|
376 * window grouping information stored as bits (0 - new group, 1 - group continues)
|
yading@10
|
377 */
|
yading@10
|
378 static const uint8_t window_grouping[9] = {
|
yading@10
|
379 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
|
yading@10
|
380 };
|
yading@10
|
381
|
yading@10
|
382 /**
|
yading@10
|
383 * Tell encoder which window types to use.
|
yading@10
|
384 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
|
yading@10
|
385 */
|
yading@10
|
386 static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
|
yading@10
|
387 const int16_t *audio,
|
yading@10
|
388 const int16_t *la,
|
yading@10
|
389 int channel, int prev_type)
|
yading@10
|
390 {
|
yading@10
|
391 int i, j;
|
yading@10
|
392 int br = ctx->avctx->bit_rate / ctx->avctx->channels;
|
yading@10
|
393 int attack_ratio = br <= 16000 ? 18 : 10;
|
yading@10
|
394 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
|
yading@10
|
395 AacPsyChannel *pch = &pctx->ch[channel];
|
yading@10
|
396 uint8_t grouping = 0;
|
yading@10
|
397 int next_type = pch->next_window_seq;
|
yading@10
|
398 FFPsyWindowInfo wi = { { 0 } };
|
yading@10
|
399
|
yading@10
|
400 if (la) {
|
yading@10
|
401 float s[8], v;
|
yading@10
|
402 int switch_to_eight = 0;
|
yading@10
|
403 float sum = 0.0, sum2 = 0.0;
|
yading@10
|
404 int attack_n = 0;
|
yading@10
|
405 int stay_short = 0;
|
yading@10
|
406 for (i = 0; i < 8; i++) {
|
yading@10
|
407 for (j = 0; j < 128; j++) {
|
yading@10
|
408 v = iir_filter(la[i*128+j], pch->iir_state);
|
yading@10
|
409 sum += v*v;
|
yading@10
|
410 }
|
yading@10
|
411 s[i] = sum;
|
yading@10
|
412 sum2 += sum;
|
yading@10
|
413 }
|
yading@10
|
414 for (i = 0; i < 8; i++) {
|
yading@10
|
415 if (s[i] > pch->win_energy * attack_ratio) {
|
yading@10
|
416 attack_n = i + 1;
|
yading@10
|
417 switch_to_eight = 1;
|
yading@10
|
418 break;
|
yading@10
|
419 }
|
yading@10
|
420 }
|
yading@10
|
421 pch->win_energy = pch->win_energy*7/8 + sum2/64;
|
yading@10
|
422
|
yading@10
|
423 wi.window_type[1] = prev_type;
|
yading@10
|
424 switch (prev_type) {
|
yading@10
|
425 case ONLY_LONG_SEQUENCE:
|
yading@10
|
426 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
|
yading@10
|
427 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
|
yading@10
|
428 break;
|
yading@10
|
429 case LONG_START_SEQUENCE:
|
yading@10
|
430 wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
|
yading@10
|
431 grouping = pch->next_grouping;
|
yading@10
|
432 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
|
yading@10
|
433 break;
|
yading@10
|
434 case LONG_STOP_SEQUENCE:
|
yading@10
|
435 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
|
yading@10
|
436 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
|
yading@10
|
437 break;
|
yading@10
|
438 case EIGHT_SHORT_SEQUENCE:
|
yading@10
|
439 stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
|
yading@10
|
440 wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
|
yading@10
|
441 grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
|
yading@10
|
442 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
|
yading@10
|
443 break;
|
yading@10
|
444 }
|
yading@10
|
445
|
yading@10
|
446 pch->next_grouping = window_grouping[attack_n];
|
yading@10
|
447 pch->next_window_seq = next_type;
|
yading@10
|
448 } else {
|
yading@10
|
449 for (i = 0; i < 3; i++)
|
yading@10
|
450 wi.window_type[i] = prev_type;
|
yading@10
|
451 grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
|
yading@10
|
452 }
|
yading@10
|
453
|
yading@10
|
454 wi.window_shape = 1;
|
yading@10
|
455 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
|
yading@10
|
456 wi.num_windows = 1;
|
yading@10
|
457 wi.grouping[0] = 1;
|
yading@10
|
458 } else {
|
yading@10
|
459 int lastgrp = 0;
|
yading@10
|
460 wi.num_windows = 8;
|
yading@10
|
461 for (i = 0; i < 8; i++) {
|
yading@10
|
462 if (!((grouping >> i) & 1))
|
yading@10
|
463 lastgrp = i;
|
yading@10
|
464 wi.grouping[lastgrp]++;
|
yading@10
|
465 }
|
yading@10
|
466 }
|
yading@10
|
467
|
yading@10
|
468 return wi;
|
yading@10
|
469 }
|
yading@10
|
470
|
yading@10
|
471 /* 5.6.1.2 "Calculation of Bit Demand" */
|
yading@10
|
472 static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
|
yading@10
|
473 int short_window)
|
yading@10
|
474 {
|
yading@10
|
475 const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
|
yading@10
|
476 const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
|
yading@10
|
477 const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
|
yading@10
|
478 const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
|
yading@10
|
479 const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
|
yading@10
|
480 const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
|
yading@10
|
481 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
|
yading@10
|
482
|
yading@10
|
483 ctx->fill_level += ctx->frame_bits - bits;
|
yading@10
|
484 ctx->fill_level = av_clip(ctx->fill_level, 0, size);
|
yading@10
|
485 fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
|
yading@10
|
486 clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
|
yading@10
|
487 bit_save = (fill_level + bitsave_add) * bitsave_slope;
|
yading@10
|
488 assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
|
yading@10
|
489 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
|
yading@10
|
490 assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
|
yading@10
|
491 /* The bit factor graph in the spec is obviously incorrect.
|
yading@10
|
492 * bit_spend + ((bit_spend - bit_spend))...
|
yading@10
|
493 * The reference encoder subtracts everything from 1, but also seems incorrect.
|
yading@10
|
494 * 1 - bit_save + ((bit_spend + bit_save))...
|
yading@10
|
495 * Hopefully below is correct.
|
yading@10
|
496 */
|
yading@10
|
497 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
|
yading@10
|
498 /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
|
yading@10
|
499 ctx->pe.max = FFMAX(pe, ctx->pe.max);
|
yading@10
|
500 ctx->pe.min = FFMIN(pe, ctx->pe.min);
|
yading@10
|
501
|
yading@10
|
502 return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
|
yading@10
|
503 }
|
yading@10
|
504
|
yading@10
|
505 static float calc_pe_3gpp(AacPsyBand *band)
|
yading@10
|
506 {
|
yading@10
|
507 float pe, a;
|
yading@10
|
508
|
yading@10
|
509 band->pe = 0.0f;
|
yading@10
|
510 band->pe_const = 0.0f;
|
yading@10
|
511 band->active_lines = 0.0f;
|
yading@10
|
512 if (band->energy > band->thr) {
|
yading@10
|
513 a = log2f(band->energy);
|
yading@10
|
514 pe = a - log2f(band->thr);
|
yading@10
|
515 band->active_lines = band->nz_lines;
|
yading@10
|
516 if (pe < PSY_3GPP_C1) {
|
yading@10
|
517 pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
|
yading@10
|
518 a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
|
yading@10
|
519 band->active_lines *= PSY_3GPP_C3;
|
yading@10
|
520 }
|
yading@10
|
521 band->pe = pe * band->nz_lines;
|
yading@10
|
522 band->pe_const = a * band->nz_lines;
|
yading@10
|
523 }
|
yading@10
|
524
|
yading@10
|
525 return band->pe;
|
yading@10
|
526 }
|
yading@10
|
527
|
yading@10
|
528 static float calc_reduction_3gpp(float a, float desired_pe, float pe,
|
yading@10
|
529 float active_lines)
|
yading@10
|
530 {
|
yading@10
|
531 float thr_avg, reduction;
|
yading@10
|
532
|
yading@10
|
533 if(active_lines == 0.0)
|
yading@10
|
534 return 0;
|
yading@10
|
535
|
yading@10
|
536 thr_avg = exp2f((a - pe) / (4.0f * active_lines));
|
yading@10
|
537 reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
|
yading@10
|
538
|
yading@10
|
539 return FFMAX(reduction, 0.0f);
|
yading@10
|
540 }
|
yading@10
|
541
|
yading@10
|
542 static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
|
yading@10
|
543 float reduction)
|
yading@10
|
544 {
|
yading@10
|
545 float thr = band->thr;
|
yading@10
|
546
|
yading@10
|
547 if (band->energy > thr) {
|
yading@10
|
548 thr = sqrtf(thr);
|
yading@10
|
549 thr = sqrtf(thr) + reduction;
|
yading@10
|
550 thr *= thr;
|
yading@10
|
551 thr *= thr;
|
yading@10
|
552
|
yading@10
|
553 /* This deviates from the 3GPP spec to match the reference encoder.
|
yading@10
|
554 * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
|
yading@10
|
555 * that have hole avoidance on (active or inactive). It always reduces the
|
yading@10
|
556 * threshold of bands with hole avoidance off.
|
yading@10
|
557 */
|
yading@10
|
558 if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
|
yading@10
|
559 thr = FFMAX(band->thr, band->energy * min_snr);
|
yading@10
|
560 band->avoid_holes = PSY_3GPP_AH_ACTIVE;
|
yading@10
|
561 }
|
yading@10
|
562 }
|
yading@10
|
563
|
yading@10
|
564 return thr;
|
yading@10
|
565 }
|
yading@10
|
566
|
yading@10
|
567 #ifndef calc_thr_3gpp
|
yading@10
|
568 static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
|
yading@10
|
569 const uint8_t *band_sizes, const float *coefs)
|
yading@10
|
570 {
|
yading@10
|
571 int i, w, g;
|
yading@10
|
572 int start = 0;
|
yading@10
|
573 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
574 for (g = 0; g < num_bands; g++) {
|
yading@10
|
575 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
576
|
yading@10
|
577 float form_factor = 0.0f;
|
yading@10
|
578 float Temp;
|
yading@10
|
579 band->energy = 0.0f;
|
yading@10
|
580 for (i = 0; i < band_sizes[g]; i++) {
|
yading@10
|
581 band->energy += coefs[start+i] * coefs[start+i];
|
yading@10
|
582 form_factor += sqrtf(fabs(coefs[start+i]));
|
yading@10
|
583 }
|
yading@10
|
584 Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
|
yading@10
|
585 band->thr = band->energy * 0.001258925f;
|
yading@10
|
586 band->nz_lines = form_factor * sqrtf(Temp);
|
yading@10
|
587
|
yading@10
|
588 start += band_sizes[g];
|
yading@10
|
589 }
|
yading@10
|
590 }
|
yading@10
|
591 }
|
yading@10
|
592 #endif /* calc_thr_3gpp */
|
yading@10
|
593
|
yading@10
|
594 #ifndef psy_hp_filter
|
yading@10
|
595 static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
|
yading@10
|
596 {
|
yading@10
|
597 int i, j;
|
yading@10
|
598 for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
|
yading@10
|
599 float sum1, sum2;
|
yading@10
|
600 sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
|
yading@10
|
601 sum2 = 0.0;
|
yading@10
|
602 for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
|
yading@10
|
603 sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
|
yading@10
|
604 sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
|
yading@10
|
605 }
|
yading@10
|
606 /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. Tuning this for normalized floats would be difficult. */
|
yading@10
|
607 hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
|
yading@10
|
608 }
|
yading@10
|
609 }
|
yading@10
|
610 #endif /* psy_hp_filter */
|
yading@10
|
611
|
yading@10
|
612 /**
|
yading@10
|
613 * Calculate band thresholds as suggested in 3GPP TS26.403
|
yading@10
|
614 */
|
yading@10
|
615 static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
|
yading@10
|
616 const float *coefs, const FFPsyWindowInfo *wi)
|
yading@10
|
617 {
|
yading@10
|
618 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
|
yading@10
|
619 AacPsyChannel *pch = &pctx->ch[channel];
|
yading@10
|
620 int i, w, g;
|
yading@10
|
621 float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
|
yading@10
|
622 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
|
yading@10
|
623 float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
|
yading@10
|
624 const int num_bands = ctx->num_bands[wi->num_windows == 8];
|
yading@10
|
625 const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
|
yading@10
|
626 AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
|
yading@10
|
627 const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
|
yading@10
|
628
|
yading@10
|
629 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
|
yading@10
|
630 calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs);
|
yading@10
|
631
|
yading@10
|
632 //modify thresholds and energies - spread, threshold in quiet, pre-echo control
|
yading@10
|
633 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
634 AacPsyBand *bands = &pch->band[w];
|
yading@10
|
635
|
yading@10
|
636 /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
|
yading@10
|
637 spread_en[0] = bands[0].energy;
|
yading@10
|
638 for (g = 1; g < num_bands; g++) {
|
yading@10
|
639 bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
|
yading@10
|
640 spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
|
yading@10
|
641 }
|
yading@10
|
642 for (g = num_bands - 2; g >= 0; g--) {
|
yading@10
|
643 bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
|
yading@10
|
644 spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
|
yading@10
|
645 }
|
yading@10
|
646 //5.4.2.4 "Threshold in quiet"
|
yading@10
|
647 for (g = 0; g < num_bands; g++) {
|
yading@10
|
648 AacPsyBand *band = &bands[g];
|
yading@10
|
649
|
yading@10
|
650 band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
|
yading@10
|
651 //5.4.2.5 "Pre-echo control"
|
yading@10
|
652 if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
|
yading@10
|
653 band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
|
yading@10
|
654 PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
|
yading@10
|
655
|
yading@10
|
656 /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
|
yading@10
|
657 pe += calc_pe_3gpp(band);
|
yading@10
|
658 a += band->pe_const;
|
yading@10
|
659 active_lines += band->active_lines;
|
yading@10
|
660
|
yading@10
|
661 /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
|
yading@10
|
662 if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
|
yading@10
|
663 band->avoid_holes = PSY_3GPP_AH_NONE;
|
yading@10
|
664 else
|
yading@10
|
665 band->avoid_holes = PSY_3GPP_AH_INACTIVE;
|
yading@10
|
666 }
|
yading@10
|
667 }
|
yading@10
|
668
|
yading@10
|
669 /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
|
yading@10
|
670 ctx->ch[channel].entropy = pe;
|
yading@10
|
671 desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
|
yading@10
|
672 desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
|
yading@10
|
673 /* NOTE: PE correction is kept simple. During initial testing it had very
|
yading@10
|
674 * little effect on the final bitrate. Probably a good idea to come
|
yading@10
|
675 * back and do more testing later.
|
yading@10
|
676 */
|
yading@10
|
677 if (ctx->bitres.bits > 0)
|
yading@10
|
678 desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
|
yading@10
|
679 0.85f, 1.15f);
|
yading@10
|
680 pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
|
yading@10
|
681
|
yading@10
|
682 if (desired_pe < pe) {
|
yading@10
|
683 /* 5.6.1.3.4 "First Estimation of the reduction value" */
|
yading@10
|
684 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
685 reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
|
yading@10
|
686 pe = 0.0f;
|
yading@10
|
687 a = 0.0f;
|
yading@10
|
688 active_lines = 0.0f;
|
yading@10
|
689 for (g = 0; g < num_bands; g++) {
|
yading@10
|
690 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
691
|
yading@10
|
692 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
|
yading@10
|
693 /* recalculate PE */
|
yading@10
|
694 pe += calc_pe_3gpp(band);
|
yading@10
|
695 a += band->pe_const;
|
yading@10
|
696 active_lines += band->active_lines;
|
yading@10
|
697 }
|
yading@10
|
698 }
|
yading@10
|
699
|
yading@10
|
700 /* 5.6.1.3.5 "Second Estimation of the reduction value" */
|
yading@10
|
701 for (i = 0; i < 2; i++) {
|
yading@10
|
702 float pe_no_ah = 0.0f, desired_pe_no_ah;
|
yading@10
|
703 active_lines = a = 0.0f;
|
yading@10
|
704 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
705 for (g = 0; g < num_bands; g++) {
|
yading@10
|
706 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
707
|
yading@10
|
708 if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
|
yading@10
|
709 pe_no_ah += band->pe;
|
yading@10
|
710 a += band->pe_const;
|
yading@10
|
711 active_lines += band->active_lines;
|
yading@10
|
712 }
|
yading@10
|
713 }
|
yading@10
|
714 }
|
yading@10
|
715 desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
|
yading@10
|
716 if (active_lines > 0.0f)
|
yading@10
|
717 reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
|
yading@10
|
718
|
yading@10
|
719 pe = 0.0f;
|
yading@10
|
720 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
721 for (g = 0; g < num_bands; g++) {
|
yading@10
|
722 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
723
|
yading@10
|
724 if (active_lines > 0.0f)
|
yading@10
|
725 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
|
yading@10
|
726 pe += calc_pe_3gpp(band);
|
yading@10
|
727 band->norm_fac = band->active_lines / band->thr;
|
yading@10
|
728 norm_fac += band->norm_fac;
|
yading@10
|
729 }
|
yading@10
|
730 }
|
yading@10
|
731 delta_pe = desired_pe - pe;
|
yading@10
|
732 if (fabs(delta_pe) > 0.05f * desired_pe)
|
yading@10
|
733 break;
|
yading@10
|
734 }
|
yading@10
|
735
|
yading@10
|
736 if (pe < 1.15f * desired_pe) {
|
yading@10
|
737 /* 6.6.1.3.6 "Final threshold modification by linearization" */
|
yading@10
|
738 norm_fac = 1.0f / norm_fac;
|
yading@10
|
739 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
740 for (g = 0; g < num_bands; g++) {
|
yading@10
|
741 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
742
|
yading@10
|
743 if (band->active_lines > 0.5f) {
|
yading@10
|
744 float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
|
yading@10
|
745 float thr = band->thr;
|
yading@10
|
746
|
yading@10
|
747 thr *= exp2f(delta_sfb_pe / band->active_lines);
|
yading@10
|
748 if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
|
yading@10
|
749 thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
|
yading@10
|
750 band->thr = thr;
|
yading@10
|
751 }
|
yading@10
|
752 }
|
yading@10
|
753 }
|
yading@10
|
754 } else {
|
yading@10
|
755 /* 5.6.1.3.7 "Further perceptual entropy reduction" */
|
yading@10
|
756 g = num_bands;
|
yading@10
|
757 while (pe > desired_pe && g--) {
|
yading@10
|
758 for (w = 0; w < wi->num_windows*16; w+= 16) {
|
yading@10
|
759 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
760 if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
|
yading@10
|
761 coeffs[g].min_snr = PSY_SNR_1DB;
|
yading@10
|
762 band->thr = band->energy * PSY_SNR_1DB;
|
yading@10
|
763 pe += band->active_lines * 1.5f - band->pe;
|
yading@10
|
764 }
|
yading@10
|
765 }
|
yading@10
|
766 }
|
yading@10
|
767 /* TODO: allow more holes (unused without mid/side) */
|
yading@10
|
768 }
|
yading@10
|
769 }
|
yading@10
|
770
|
yading@10
|
771 for (w = 0; w < wi->num_windows*16; w += 16) {
|
yading@10
|
772 for (g = 0; g < num_bands; g++) {
|
yading@10
|
773 AacPsyBand *band = &pch->band[w+g];
|
yading@10
|
774 FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
|
yading@10
|
775
|
yading@10
|
776 psy_band->threshold = band->thr;
|
yading@10
|
777 psy_band->energy = band->energy;
|
yading@10
|
778 }
|
yading@10
|
779 }
|
yading@10
|
780
|
yading@10
|
781 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
|
yading@10
|
782 }
|
yading@10
|
783
|
yading@10
|
784 static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
|
yading@10
|
785 const float **coeffs, const FFPsyWindowInfo *wi)
|
yading@10
|
786 {
|
yading@10
|
787 int ch;
|
yading@10
|
788 FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
|
yading@10
|
789
|
yading@10
|
790 for (ch = 0; ch < group->num_ch; ch++)
|
yading@10
|
791 psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
|
yading@10
|
792 }
|
yading@10
|
793
|
yading@10
|
794 static av_cold void psy_3gpp_end(FFPsyContext *apc)
|
yading@10
|
795 {
|
yading@10
|
796 AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
|
yading@10
|
797 av_freep(&pctx->ch);
|
yading@10
|
798 av_freep(&apc->model_priv_data);
|
yading@10
|
799 }
|
yading@10
|
800
|
yading@10
|
801 static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
|
yading@10
|
802 {
|
yading@10
|
803 int blocktype = ONLY_LONG_SEQUENCE;
|
yading@10
|
804 if (uselongblock) {
|
yading@10
|
805 if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
|
yading@10
|
806 blocktype = LONG_STOP_SEQUENCE;
|
yading@10
|
807 } else {
|
yading@10
|
808 blocktype = EIGHT_SHORT_SEQUENCE;
|
yading@10
|
809 if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
|
yading@10
|
810 ctx->next_window_seq = LONG_START_SEQUENCE;
|
yading@10
|
811 if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
|
yading@10
|
812 ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
|
yading@10
|
813 }
|
yading@10
|
814
|
yading@10
|
815 wi->window_type[0] = ctx->next_window_seq;
|
yading@10
|
816 ctx->next_window_seq = blocktype;
|
yading@10
|
817 }
|
yading@10
|
818
|
yading@10
|
819 static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
|
yading@10
|
820 const float *la, int channel, int prev_type)
|
yading@10
|
821 {
|
yading@10
|
822 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
|
yading@10
|
823 AacPsyChannel *pch = &pctx->ch[channel];
|
yading@10
|
824 int grouping = 0;
|
yading@10
|
825 int uselongblock = 1;
|
yading@10
|
826 int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
|
yading@10
|
827 int i;
|
yading@10
|
828 FFPsyWindowInfo wi = { { 0 } };
|
yading@10
|
829
|
yading@10
|
830 if (la) {
|
yading@10
|
831 float hpfsmpl[AAC_BLOCK_SIZE_LONG];
|
yading@10
|
832 float const *pf = hpfsmpl;
|
yading@10
|
833 float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
|
yading@10
|
834 float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
|
yading@10
|
835 float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
|
yading@10
|
836 const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
|
yading@10
|
837 int att_sum = 0;
|
yading@10
|
838
|
yading@10
|
839 /* LAME comment: apply high pass filter of fs/4 */
|
yading@10
|
840 psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
|
yading@10
|
841
|
yading@10
|
842 /* Calculate the energies of each sub-shortblock */
|
yading@10
|
843 for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
|
yading@10
|
844 energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
|
yading@10
|
845 assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
|
yading@10
|
846 attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
|
yading@10
|
847 energy_short[0] += energy_subshort[i];
|
yading@10
|
848 }
|
yading@10
|
849
|
yading@10
|
850 for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
|
yading@10
|
851 float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
|
yading@10
|
852 float p = 1.0f;
|
yading@10
|
853 for (; pf < pfe; pf++)
|
yading@10
|
854 p = FFMAX(p, fabsf(*pf));
|
yading@10
|
855 pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
|
yading@10
|
856 energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
|
yading@10
|
857 /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
|
yading@10
|
858 * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
|
yading@10
|
859 * (which is what we use here). What the 3 stands for is ambiguous, as it is both
|
yading@10
|
860 * number of short blocks, and the number of sub-short blocks.
|
yading@10
|
861 * It seems that LAME is comparing each sub-block to sub-block + 1 in the
|
yading@10
|
862 * previous block.
|
yading@10
|
863 */
|
yading@10
|
864 if (p > energy_subshort[i + 1])
|
yading@10
|
865 p = p / energy_subshort[i + 1];
|
yading@10
|
866 else if (energy_subshort[i + 1] > p * 10.0f)
|
yading@10
|
867 p = energy_subshort[i + 1] / (p * 10.0f);
|
yading@10
|
868 else
|
yading@10
|
869 p = 0.0;
|
yading@10
|
870 attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
|
yading@10
|
871 }
|
yading@10
|
872
|
yading@10
|
873 /* compare energy between sub-short blocks */
|
yading@10
|
874 for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
|
yading@10
|
875 if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
|
yading@10
|
876 if (attack_intensity[i] > pch->attack_threshold)
|
yading@10
|
877 attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
|
yading@10
|
878
|
yading@10
|
879 /* should have energy change between short blocks, in order to avoid periodic signals */
|
yading@10
|
880 /* Good samples to show the effect are Trumpet test songs */
|
yading@10
|
881 /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
|
yading@10
|
882 /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
|
yading@10
|
883 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
|
yading@10
|
884 float const u = energy_short[i - 1];
|
yading@10
|
885 float const v = energy_short[i];
|
yading@10
|
886 float const m = FFMAX(u, v);
|
yading@10
|
887 if (m < 40000) { /* (2) */
|
yading@10
|
888 if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
|
yading@10
|
889 if (i == 1 && attacks[0] < attacks[i])
|
yading@10
|
890 attacks[0] = 0;
|
yading@10
|
891 attacks[i] = 0;
|
yading@10
|
892 }
|
yading@10
|
893 }
|
yading@10
|
894 att_sum += attacks[i];
|
yading@10
|
895 }
|
yading@10
|
896
|
yading@10
|
897 if (attacks[0] <= pch->prev_attack)
|
yading@10
|
898 attacks[0] = 0;
|
yading@10
|
899
|
yading@10
|
900 att_sum += attacks[0];
|
yading@10
|
901 /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
|
yading@10
|
902 if (pch->prev_attack == 3 || att_sum) {
|
yading@10
|
903 uselongblock = 0;
|
yading@10
|
904
|
yading@10
|
905 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
|
yading@10
|
906 if (attacks[i] && attacks[i-1])
|
yading@10
|
907 attacks[i] = 0;
|
yading@10
|
908 }
|
yading@10
|
909 } else {
|
yading@10
|
910 /* We have no lookahead info, so just use same type as the previous sequence. */
|
yading@10
|
911 uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
|
yading@10
|
912 }
|
yading@10
|
913
|
yading@10
|
914 lame_apply_block_type(pch, &wi, uselongblock);
|
yading@10
|
915
|
yading@10
|
916 wi.window_type[1] = prev_type;
|
yading@10
|
917 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
|
yading@10
|
918 wi.num_windows = 1;
|
yading@10
|
919 wi.grouping[0] = 1;
|
yading@10
|
920 if (wi.window_type[0] == LONG_START_SEQUENCE)
|
yading@10
|
921 wi.window_shape = 0;
|
yading@10
|
922 else
|
yading@10
|
923 wi.window_shape = 1;
|
yading@10
|
924 } else {
|
yading@10
|
925 int lastgrp = 0;
|
yading@10
|
926
|
yading@10
|
927 wi.num_windows = 8;
|
yading@10
|
928 wi.window_shape = 0;
|
yading@10
|
929 for (i = 0; i < 8; i++) {
|
yading@10
|
930 if (!((pch->next_grouping >> i) & 1))
|
yading@10
|
931 lastgrp = i;
|
yading@10
|
932 wi.grouping[lastgrp]++;
|
yading@10
|
933 }
|
yading@10
|
934 }
|
yading@10
|
935
|
yading@10
|
936 /* Determine grouping, based on the location of the first attack, and save for
|
yading@10
|
937 * the next frame.
|
yading@10
|
938 * FIXME: Move this to analysis.
|
yading@10
|
939 * TODO: Tune groupings depending on attack location
|
yading@10
|
940 * TODO: Handle more than one attack in a group
|
yading@10
|
941 */
|
yading@10
|
942 for (i = 0; i < 9; i++) {
|
yading@10
|
943 if (attacks[i]) {
|
yading@10
|
944 grouping = i;
|
yading@10
|
945 break;
|
yading@10
|
946 }
|
yading@10
|
947 }
|
yading@10
|
948 pch->next_grouping = window_grouping[grouping];
|
yading@10
|
949
|
yading@10
|
950 pch->prev_attack = attacks[8];
|
yading@10
|
951
|
yading@10
|
952 return wi;
|
yading@10
|
953 }
|
yading@10
|
954
|
yading@10
|
955 const FFPsyModel ff_aac_psy_model =
|
yading@10
|
956 {
|
yading@10
|
957 .name = "3GPP TS 26.403-inspired model",
|
yading@10
|
958 .init = psy_3gpp_init,
|
yading@10
|
959 .window = psy_lame_window,
|
yading@10
|
960 .analyze = psy_3gpp_analyze,
|
yading@10
|
961 .end = psy_3gpp_end,
|
yading@10
|
962 };
|