annotate extra/sinemodel_.m @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1
yading@10 2 function [y]=sinemodel_(x,w,N,t)
yading@10 3 %initializing values
yading@10 4 M = length(w); % window size - the longer the more frequency resolution
yading@10 5 N2 = N/2+1; % positive part of the spectrum
yading@10 6 Ns= 2048; % FFT size for synthesis (even)
yading@10 7 H = 512; % analysis/synthesishop size
yading@10 8 soundlength = length(x); % length of input sound array - samples
yading@10 9
yading@10 10 fftbuffer = zeros(N,1); % initialize buffer for FFT
yading@10 11
yading@10 12 %Create a loop to step through the sound array x
yading@10 13 %initializing the loop
yading@10 14 hNs = Ns/2; % half synthesis window size
yading@10 15 hM = (M-1)/2; % half analysis window size used to overlap windows
yading@10 16
yading@10 17 pin = max(H+1,1+hM); % initialize sound pointer to middle of analysis window
yading@10 18 pend = soundlength-max(H,hM); % last sample to start a frame
yading@10 19
yading@10 20 y = zeros(soundlength,1); % initialize output array
yading@10 21 w = w/sum(w); % normalize analysis window
yading@10 22 sw = zeros(Ns,1);
yading@10 23 ow = triang(2*H-1); % overlapping window
yading@10 24 ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes
yading@10 25 sw(ovidx) = ow(1:2*H-1);
yading@10 26 bh = blackmanharris(Ns); % synthesis window
yading@10 27 bh = bh ./ sum(bh); % normalize synthesis window
yading@10 28 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
yading@10 29
yading@10 30 while pin<pend
yading@10 31 xw = x(pin-hM:pin+hM).*w(1:M)'; % window the input sound - STFT definition
yading@10 32
yading@10 33 %zero phased window
yading@10 34 fftbuffer(:) = 0; % reset buffer
yading@10 35 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase fftbuffer
yading@10 36 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
yading@10 37
yading@10 38 %compute FFT of the zero phased frame
yading@10 39 X = fft(fftbuffer);
yading@10 40
yading@10 41 %calculate magnitude and phase spectrum of of positive frequencies
yading@10 42 mX = 20*log10(abs(X(1:N2)));
yading@10 43 pX = unwrap(angle(X(1:N2))); % unwrapped phase spectrum
yading@10 44
yading@10 45
yading@10 46 %Find the locations, ploc, of the local maxima above a given
yading@10 47 %threshold, t, in each magnitude spectrum by finding changes of slope.
yading@10 48 ploc = 1+find((mX(2:N2-1)>t).*(mX(2:N2-1)>mX(3:N2)).*(mX(2:N2-1)>mX(1:N2-2))); %peaks
yading@10 49
yading@10 50 %Find the magnitudes, pmag, and phases, pphase, of the obtained
yading@10 51 %locations.
yading@10 52 pmag = mX(ploc);
yading@10 53 %pmag = mX(ploc)*0.4;
yading@10 54 pphase = pX(ploc);
yading@10 55
yading@10 56 %peak interpolation
yading@10 57 [iploc, ipmag, ipphase] = peakinterp (mX, pX, ploc);
yading@10 58
yading@10 59 %plot for a window
yading@10 60
yading@10 61 subplot(2,1,1)
yading@10 62 plot(mX)
yading@10 63 hold on
yading@10 64 plot(ploc,pmag,'*');
yading@10 65 plot(iploc,ipmag,'c');
yading@10 66 title('magnitude peak values');
yading@10 67 hold off
yading@10 68 subplot(2,1,2)
yading@10 69 plot(pX)
yading@10 70 hold on
yading@10 71 plot(ploc,pphase,'m');
yading@10 72 plot(iploc,ipphase,'c*')
yading@10 73 title('phase peak values');
yading@10 74 hold off
yading@10 75
yading@10 76 %number of peaks
yading@10 77
yading@10 78 end
yading@10 79