yading@10
|
1
|
yading@10
|
2 function [y]=sinemodel_(x,w,N,t)
|
yading@10
|
3 %initializing values
|
yading@10
|
4 M = length(w); % window size - the longer the more frequency resolution
|
yading@10
|
5 N2 = N/2+1; % positive part of the spectrum
|
yading@10
|
6 Ns= 2048; % FFT size for synthesis (even)
|
yading@10
|
7 H = 512; % analysis/synthesishop size
|
yading@10
|
8 soundlength = length(x); % length of input sound array - samples
|
yading@10
|
9
|
yading@10
|
10 fftbuffer = zeros(N,1); % initialize buffer for FFT
|
yading@10
|
11
|
yading@10
|
12 %Create a loop to step through the sound array x
|
yading@10
|
13 %initializing the loop
|
yading@10
|
14 hNs = Ns/2; % half synthesis window size
|
yading@10
|
15 hM = (M-1)/2; % half analysis window size used to overlap windows
|
yading@10
|
16
|
yading@10
|
17 pin = max(H+1,1+hM); % initialize sound pointer to middle of analysis window
|
yading@10
|
18 pend = soundlength-max(H,hM); % last sample to start a frame
|
yading@10
|
19
|
yading@10
|
20 y = zeros(soundlength,1); % initialize output array
|
yading@10
|
21 w = w/sum(w); % normalize analysis window
|
yading@10
|
22 sw = zeros(Ns,1);
|
yading@10
|
23 ow = triang(2*H-1); % overlapping window
|
yading@10
|
24 ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes
|
yading@10
|
25 sw(ovidx) = ow(1:2*H-1);
|
yading@10
|
26 bh = blackmanharris(Ns); % synthesis window
|
yading@10
|
27 bh = bh ./ sum(bh); % normalize synthesis window
|
yading@10
|
28 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
|
yading@10
|
29
|
yading@10
|
30 while pin<pend
|
yading@10
|
31 xw = x(pin-hM:pin+hM).*w(1:M)'; % window the input sound - STFT definition
|
yading@10
|
32
|
yading@10
|
33 %zero phased window
|
yading@10
|
34 fftbuffer(:) = 0; % reset buffer
|
yading@10
|
35 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase fftbuffer
|
yading@10
|
36 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
|
yading@10
|
37
|
yading@10
|
38 %compute FFT of the zero phased frame
|
yading@10
|
39 X = fft(fftbuffer);
|
yading@10
|
40
|
yading@10
|
41 %calculate magnitude and phase spectrum of of positive frequencies
|
yading@10
|
42 mX = 20*log10(abs(X(1:N2)));
|
yading@10
|
43 pX = unwrap(angle(X(1:N2))); % unwrapped phase spectrum
|
yading@10
|
44
|
yading@10
|
45
|
yading@10
|
46 %Find the locations, ploc, of the local maxima above a given
|
yading@10
|
47 %threshold, t, in each magnitude spectrum by finding changes of slope.
|
yading@10
|
48 ploc = 1+find((mX(2:N2-1)>t).*(mX(2:N2-1)>mX(3:N2)).*(mX(2:N2-1)>mX(1:N2-2))); %peaks
|
yading@10
|
49
|
yading@10
|
50 %Find the magnitudes, pmag, and phases, pphase, of the obtained
|
yading@10
|
51 %locations.
|
yading@10
|
52 pmag = mX(ploc);
|
yading@10
|
53 %pmag = mX(ploc)*0.4;
|
yading@10
|
54 pphase = pX(ploc);
|
yading@10
|
55
|
yading@10
|
56 %peak interpolation
|
yading@10
|
57 [iploc, ipmag, ipphase] = peakinterp (mX, pX, ploc);
|
yading@10
|
58
|
yading@10
|
59 %plot for a window
|
yading@10
|
60
|
yading@10
|
61 subplot(2,1,1)
|
yading@10
|
62 plot(mX)
|
yading@10
|
63 hold on
|
yading@10
|
64 plot(ploc,pmag,'*');
|
yading@10
|
65 plot(iploc,ipmag,'c');
|
yading@10
|
66 title('magnitude peak values');
|
yading@10
|
67 hold off
|
yading@10
|
68 subplot(2,1,2)
|
yading@10
|
69 plot(pX)
|
yading@10
|
70 hold on
|
yading@10
|
71 plot(ploc,pphase,'m');
|
yading@10
|
72 plot(iploc,ipphase,'c*')
|
yading@10
|
73 title('phase peak values');
|
yading@10
|
74 hold off
|
yading@10
|
75
|
yading@10
|
76 %number of peaks
|
yading@10
|
77
|
yading@10
|
78 end
|
yading@10
|
79
|