Mercurial > hg > plosone_underreview
view scripts/outliers.py @ 37:2cc444441f42 branch-tests
refactor pitchbihist and introduce default melody_sr
author | Maria Panteli |
---|---|
date | Thu, 14 Sep 2017 14:50:00 +0100 |
parents | 65b9330afdd8 |
children | 9430abe45e4a |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Tue Jul 12 20:49:48 2016 @author: mariapanteli """ import numpy as np import pandas as pd import pickle from collections import Counter from sklearn.cluster import KMeans import utils import utils_spatial def country_outlier_df(counts, labels, out_file=None, normalize=False): if len(counts.keys()) < len(np.unique(labels)): for label in np.unique(labels): if not counts.has_key(label): counts.update({label:0}) if normalize: counts = normalize_outlier_counts(counts, Counter(labels)) df = pd.DataFrame.from_dict(counts, orient='index').reset_index() df.rename(columns={'index':'Country', 0:'Outliers'}, inplace=True) if out_file is not None: df.to_csv(out_file, index=False) return df def normalize_outlier_counts(outlier_counts, country_counts): '''Normalize a dictionary of outlier counts per country by the total number of recordings per country ''' for key in outlier_counts.keys(): # dictionaries should have the same keys outlier_counts[key] = float(outlier_counts[key]) / float(country_counts[key]) return outlier_counts def get_outliers_df(X, Y, chi2thr=0.999, out_file=None): threshold, y_pred, MD = utils.get_outliers_Mahal(X, chi2thr=chi2thr) global_counts = Counter(Y[y_pred]) df = country_outlier_df(global_counts, Y, normalize=True) if out_file is not None: df.to_csv(out_file, index=False) return df, threshold, MD def print_most_least_outliers_topN(df, N=10): sort_inds = df['Outliers'].argsort() # ascending order df_most = df[['Country', 'Outliers']].iloc[sort_inds[::-1][:N]] df_least = df[['Country', 'Outliers']].iloc[sort_inds[:N]] print "most outliers " print df_most print "least outliers " print df_least def load_metadata(Yaudio, metadata_file): df = pd.read_csv(metadata_file) df_audio = pd.DataFrame({'Audio':Yaudio}) ddf = pd.merge(df_audio, df, on='Audio', suffixes=['', '_r']) # in the order of Yaudio return ddf def print_clusters_metadata(df, cl_pred, out_file=None): def get_top_N_counts(labels, N=3): ulab, ucount = np.unique(labels, return_counts=True) inds = np.argsort(ucount) return zip(ulab[inds[-N:]],ucount[inds[-N:]]) info = np.array([str(df['Country'].iloc[i]) for i in range(len(df))]) styles_description = [] uniq_cl = np.unique(cl_pred) for ccl in uniq_cl: inds = np.where(cl_pred==ccl)[0] styles_description.append(get_top_N_counts(info[inds], N=3)) df_styles = pd.DataFrame(data=styles_description, index=uniq_cl) print df_styles.to_latex() if out_file is not None: df_styles.to_csv(out_file, index=False) if __name__ == '__main__': # load LDA-transformed frames X_list, Y, Yaudio = pickle.load(open('data/lda_data_8.pickle','rb')) ddf = load_metadata(Yaudio, metadata_file='data/metadata.csv') w, data_countries = utils_spatial.get_neighbors_for_countries_in_dataset(Y) w_dict = utils_spatial.from_weights_to_dict(w, data_countries) X = np.concatenate(X_list, axis=1) # global outliers df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999) print_most_least_outliers_topN(df_global, N=10) spatial_outliers = utils.get_local_outliers_from_neighbors_dict(X, Y, w_dict, chi2thr=0.999, do_pca=True) spatial_counts = Counter(dict([(ll[0],ll[1]) for ll in spatial_outliers])) df_local = country_outlier_df(spatial_counts, Y, normalize=True) print_most_least_outliers_topN(df_local, N=10) feat = [Xrhy, Xmel, Xmfc, Xchr] feat_labels = ['rhy', 'mel', 'mfc', 'chr'] tabs_feat = [] for i in range(len(feat)): XX = feat[i] df_feat, threshold, MD = get_outliers_df(XX, Y, chi2thr=0.999) print_most_least_outliers_topN(df_feat, N=5) # how many styles are there #bestncl, ave_silh = utils.best_n_clusters_silhouette(X, min_ncl=5, max_ncl=50, metric="cosine") bestncl = 13 # get cluster predictions and metadata for each cluster cluster_model = KMeans(n_clusters=bestncl, random_state=50).fit(X) centroids = cluster_model.cluster_centers_ cl_pred = cluster_model.predict(X) ddf['Clusters'] = cl_pred print_clusters_metadata(ddf, cl_pred) # how similar are the cultures and which ones seem to be global outliers cluster_freq = utils.get_cluster_freq_linear(X, Y, centroids) # Moran on Mahalanobis distances data = cluster_freq.get_values() data_countries = cluster_freq.index #threshold, y_pred, MD = utils.get_outliers_Mahal(data, chi2thr=0.999) threshold, y_pred, MD = utils.get_outliers(data, chi2thr=0.999) y = np.sqrt(MD) utils_spatial.print_Moran_outliers(y, w, data_countries) utils_spatial.plot_Moran_scatterplot(y, w, data_countries)