diff notebooks/results_for_30_seconds.ipynb @ 79:98fc06ba2938 branch-tests

sorted classification results
author mpanteli <m.x.panteli@gmail.com>
date Tue, 26 Sep 2017 14:37:28 +0100
parents 9e526f7c9715
children 4395037087b6
line wrap: on
line diff
--- a/notebooks/results_for_30_seconds.ipynb	Tue Sep 26 12:40:07 2017 +0100
+++ b/notebooks/results_for_30_seconds.ipynb	Tue Sep 26 14:37:28 2017 +0100
@@ -3,9 +3,7 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stderr",
@@ -89,10 +87,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "collapsed": false
-   },
+   "execution_count": 2,
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -127,10 +123,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "collapsed": false
-   },
+   "execution_count": 3,
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -151,9 +145,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -212,9 +204,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 5,
    "metadata": {
-    "collapsed": false,
     "scrolled": true
    },
    "outputs": [
@@ -223,110 +214,222 @@
      "output_type": "stream",
      "text": [
       "/import/c4dm-04/mariap/lda_data_melodia_8_30sec.pickle\n",
-      "KNN LDA 0.133638538664\n",
-      "LDA LDA 0.315981704242\n",
-      "SVM LDA 0.0286516818584\n",
-      "RF LDA 0.0649346198079\n",
-      "KNN   0.047906648979\n",
-      "LDA   0.146811708362\n",
-      "SVM   0.0721574739754\n",
-      "RF   0.0285408784052\n",
-      "KNN   0.0225982700973\n",
-      "LDA   0.0748199642972\n",
-      "SVM   0.0498984844477\n",
-      "RF   0.0184757141783\n",
-      "KNN   0.272541771809\n",
-      "LDA   0.189776850025\n",
-      "SVM   0.291219340444\n",
-      "RF   0.12107835911\n",
-      "KNN   0.0638995544919\n",
-      "LDA   0.0904155775207\n",
-      "SVM   0.079580312683\n",
-      "RF   0.0507212741212\n",
-      "/import/c4dm-04/mariap/pca_data_melodia_8_30sec.pickle\n"
-     ]
-    },
-    {
-     "ename": "ValueError",
-     "evalue": "need at least one array to concatenate",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-29-78a92fadfdf1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf_results\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassification\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclassify_for_filenames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOUTPUT_FILES\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mdf_results\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_latex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/classification.py\u001b[0m in \u001b[0;36mclassify_for_filenames\u001b[0;34m(file_list)\u001b[0m\n\u001b[1;32m     61\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform_label\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTRANSFORM_LABELS\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     62\u001b[0m         \u001b[0;32mprint\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m         \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     64\u001b[0m         \u001b[0;31m#X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     65\u001b[0m         \u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_val_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY_val_test\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_state\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mRANDOM_STATE\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstratify\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/classification.py\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m     \u001b[0mX_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m     \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     24\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mValueError\u001b[0m: need at least one array to concatenate"
+      "KNN LDA 0.151978449974\n",
+      "LDA LDA 0.320669835863\n",
+      "SVM LDA 0.0231101788399\n",
+      "RF LDA 0.0707681464082\n",
+      "KNN LDA 0.0547390436205\n",
+      "LDA LDA 0.150312531138\n",
+      "SVM LDA 0.0787628988868\n",
+      "RF LDA 0.0311176089141\n",
+      "KNN LDA 0.0232330458268\n",
+      "LDA LDA 0.0702474072041\n",
+      "SVM LDA 0.050068706152\n",
+      "RF LDA 0.0168479682586\n",
+      "KNN LDA 0.281733731607\n",
+      "LDA LDA 0.198582742899\n",
+      "SVM LDA 0.296355560166\n",
+      "RF LDA 0.150028594255\n",
+      "KNN LDA 0.0857923493684\n",
+      "LDA LDA 0.107355289483\n",
+      "SVM LDA 0.0896098014444\n",
+      "RF LDA 0.0507616592735\n",
+      "/import/c4dm-04/mariap/pca_data_melodia_8_30sec.pickle\n",
+      "KNN PCA 0.140643930221\n",
+      "LDA PCA 0.175099072208\n",
+      "SVM PCA 0.0149273059799\n",
+      "RF PCA 0.0456009299668\n",
+      "KNN PCA 0.052516908106\n",
+      "LDA PCA 0.055028942176\n",
+      "SVM PCA 0.0479512645907\n",
+      "RF PCA 0.0263226873341\n",
+      "KNN PCA 0.0268729640269\n",
+      "LDA PCA 0.0459303318699\n",
+      "SVM PCA 0.0386730267598\n",
+      "RF PCA 0.0186964838343\n",
+      "KNN PCA 0.220850433533\n",
+      "LDA PCA 0.161502657527\n",
+      "SVM PCA 0.245790916558\n",
+      "RF PCA 0.139792959142\n",
+      "KNN PCA 0.0814272808267\n",
+      "LDA PCA 0.0839732813486\n",
+      "SVM PCA 0.0918638232782\n",
+      "RF PCA 0.0445219060784\n",
+      "/import/c4dm-04/mariap/nmf_data_melodia_8_30sec.pickle\n",
+      "KNN NMF 0.114298949339\n",
+      "LDA NMF 0.178244078869\n",
+      "SVM NMF 0.0164055663008\n",
+      "RF NMF 0.0629920627191\n",
+      "KNN NMF 0.043057794756\n",
+      "LDA NMF 0.0586662842996\n",
+      "SVM NMF 0.00781273342686\n",
+      "RF NMF 0.0322137767606\n",
+      "KNN NMF 0.0285281454673\n",
+      "LDA NMF 0.0463659955869\n",
+      "SVM NMF 0.00768887594564\n",
+      "RF NMF 0.020364413503\n",
+      "KNN NMF 0.177819886656\n",
+      "LDA NMF 0.166221515627\n",
+      "SVM NMF 0.010788613595\n",
+      "RF NMF 0.125503851218\n",
+      "KNN NMF 0.0795454671166\n",
+      "LDA NMF 0.0856428557896\n",
+      "SVM NMF 0.0116920633048\n",
+      "RF NMF 0.0415516315034\n",
+      "/import/c4dm-04/mariap/ssnmf_data_melodia_8_30sec.pickle\n",
+      "KNN SSNMF 0.14322692821\n",
+      "LDA SSNMF 0.18320247367\n",
+      "SVM SSNMF 0.0205784326384\n",
+      "RF SSNMF 0.0453718187022\n",
+      "KNN SSNMF 0.0431300683181\n",
+      "LDA SSNMF 0.0533449581285\n",
+      "SVM SSNMF 0.0106542141335\n",
+      "RF SSNMF 0.031229373819\n",
+      "KNN SSNMF 0.0152235481009\n",
+      "LDA SSNMF 0.038872838043\n",
+      "SVM SSNMF 0.00536127803533\n",
+      "RF SSNMF 0.0181117619327\n",
+      "KNN SSNMF 0.227101074174\n",
+      "LDA SSNMF 0.165382484171\n",
+      "SVM SSNMF 0.0184921176111\n",
+      "RF SSNMF 0.115557523856\n",
+      "KNN SSNMF 0.0715413500709\n",
+      "LDA SSNMF 0.0819764377219\n",
+      "SVM SSNMF 0.0138822224913\n",
+      "RF SSNMF 0.0350133428793\n",
+      "/import/c4dm-04/mariap/na_data_melodia_8_30sec.pickle\n",
+      "KNN NA 0.140075287804\n",
+      "LDA NA 0.176953549195\n",
+      "SVM NA 0.0149485545637\n",
+      "RF NA 0.0826528174744\n",
+      "KNN NA 0.0515315452955\n",
+      "LDA NA 0.0599453579616\n",
+      "SVM NA 0.0468615478392\n",
+      "RF NA 0.0398757075984\n",
+      "KNN NA 0.0273364752119\n",
+      "LDA NA 0.0378819151174\n",
+      "SVM NA 0.038290667129\n",
+      "RF NA 0.0317183273408\n",
+      "KNN NA 0.221769305159\n",
+      "LDA NA 0.191217962613\n",
+      "SVM NA 0.250268813953\n",
+      "RF NA 0.113553333212\n",
+      "KNN NA 0.0814734970192\n",
+      "LDA NA 0.0839348156722\n",
+      "SVM NA 0.0881235182136\n",
+      "RF NA 0.0586010122134\n",
+      "\\begin{tabular}{lllrrrrr}\n",
+      "\\toprule\n",
+      "{} &      0 &    1 &         2 &         3 &         4 &         5 &         6 \\\\\n",
+      "\\midrule\n",
+      "0  &    LDA &  KNN &  0.151978 &  0.054739 &  0.023233 &  0.281734 &  0.085792 \\\\\n",
+      "1  &    LDA &  LDA &  0.320670 &  0.150313 &  0.070247 &  0.198583 &  0.107355 \\\\\n",
+      "2  &    LDA &  SVM &  0.023110 &  0.078763 &  0.050069 &  0.296356 &  0.089610 \\\\\n",
+      "3  &    LDA &   RF &  0.070768 &  0.031118 &  0.016848 &  0.150029 &  0.050762 \\\\\n",
+      "4  &    PCA &  KNN &  0.140644 &  0.052517 &  0.026873 &  0.220850 &  0.081427 \\\\\n",
+      "5  &    PCA &  LDA &  0.175099 &  0.055029 &  0.045930 &  0.161503 &  0.083973 \\\\\n",
+      "6  &    PCA &  SVM &  0.014927 &  0.047951 &  0.038673 &  0.245791 &  0.091864 \\\\\n",
+      "7  &    PCA &   RF &  0.045601 &  0.026323 &  0.018696 &  0.139793 &  0.044522 \\\\\n",
+      "8  &    NMF &  KNN &  0.114299 &  0.043058 &  0.028528 &  0.177820 &  0.079545 \\\\\n",
+      "9  &    NMF &  LDA &  0.178244 &  0.058666 &  0.046366 &  0.166222 &  0.085643 \\\\\n",
+      "10 &    NMF &  SVM &  0.016406 &  0.007813 &  0.007689 &  0.010789 &  0.011692 \\\\\n",
+      "11 &    NMF &   RF &  0.062992 &  0.032214 &  0.020364 &  0.125504 &  0.041552 \\\\\n",
+      "12 &  SSNMF &  KNN &  0.143227 &  0.043130 &  0.015224 &  0.227101 &  0.071541 \\\\\n",
+      "13 &  SSNMF &  LDA &  0.183202 &  0.053345 &  0.038873 &  0.165382 &  0.081976 \\\\\n",
+      "14 &  SSNMF &  SVM &  0.020578 &  0.010654 &  0.005361 &  0.018492 &  0.013882 \\\\\n",
+      "15 &  SSNMF &   RF &  0.045372 &  0.031229 &  0.018112 &  0.115558 &  0.035013 \\\\\n",
+      "16 &     NA &  KNN &  0.140075 &  0.051532 &  0.027336 &  0.221769 &  0.081473 \\\\\n",
+      "17 &     NA &  LDA &  0.176954 &  0.059945 &  0.037882 &  0.191218 &  0.083935 \\\\\n",
+      "18 &     NA &  SVM &  0.014949 &  0.046862 &  0.038291 &  0.250269 &  0.088124 \\\\\n",
+      "19 &     NA &   RF &  0.082653 &  0.039876 &  0.031718 &  0.113553 &  0.058601 \\\\\n",
+      "\\bottomrule\n",
+      "\\end{tabular}\n",
+      "\n"
      ]
     }
    ],
    "source": [
-    "df_results = classification.classify_for_filenames(file_list=mapper.OUTPUT_FILES)\n",
-    "print df_results.to_latex()"
+    "df_results = classification.classify_for_filenames(file_list=mapper.OUTPUT_FILES)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 63,
-   "metadata": {
-    "collapsed": false,
-    "scrolled": true
-   },
+   "execution_count": 12,
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "/import/c4dm-04/mariap/lda_data_melodia_8_30sec.pickle\n",
-      "KNN LDA 0.150711701486\n",
-      "LDA LDA 0.310672996086\n",
-      "SVM LDA 0.031779420956\n",
-      "RF LDA 0.0698577462255\n",
-      "KNN LDA 0.0479291909939\n",
-      "LDA LDA 0.152723754358\n",
-      "SVM LDA 0.0743307824034\n",
-      "RF LDA 0.0375455360373\n",
-      "KNN LDA 0.0236333678307\n",
-      "LDA LDA 0.0678370978359\n",
-      "SVM LDA 0.0453560519328\n",
-      "RF LDA 0.0145428300454\n",
-      "KNN LDA 0.260115390181\n",
-      "LDA LDA 0.189620718522\n",
-      "SVM LDA 0.300264733852\n",
-      "RF LDA 0.130466596212\n",
-      "KNN LDA 0.0816262047653\n",
-      "LDA LDA 0.0841375171139\n",
-      "SVM LDA 0.0915018547681\n",
-      "RF LDA 0.0497879065996\n",
-      "/import/c4dm-04/mariap/pca_data_melodia_8_30sec.pickle\n"
-     ]
-    },
-    {
-     "ename": "ValueError",
-     "evalue": "need at least one array to concatenate",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-63-fa2902ad1eeb>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0mclassification\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mRANDOM_STATE\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m55\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf_results\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassification\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclassify_for_filenames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOUTPUT_FILES\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mdf_results\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_latex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/classification.py\u001b[0m in \u001b[0;36mclassify_for_filenames\u001b[0;34m(file_list)\u001b[0m\n\u001b[1;32m     61\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform_label\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTRANSFORM_LABELS\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     62\u001b[0m         \u001b[0;32mprint\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m         \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     64\u001b[0m         \u001b[0;31m#X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     65\u001b[0m         \u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_val_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY_val_test\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_state\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mRANDOM_STATE\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstratify\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/classification.py\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m     \u001b[0mX_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m     \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     24\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mValueError\u001b[0m: need at least one array to concatenate"
+      "\\begin{tabular}{llrrrrr}\n",
+      "\\toprule\n",
+      "     0 &    1 &         2 &         3 &         4 &         5 &         6 \\\\\n",
+      "\\midrule\n",
+      "   LDA &  KNN &  0.151978 &  0.054739 &  0.023233 &  0.281734 &  0.085792 \\\\\n",
+      "   LDA &  LDA &  0.320670 &  0.150313 &  0.070247 &  0.198583 &  0.107355 \\\\\n",
+      "   LDA &  SVM &  0.023110 &  0.078763 &  0.050069 &  0.296356 &  0.089610 \\\\\n",
+      "   LDA &   RF &  0.070768 &  0.031118 &  0.016848 &  0.150029 &  0.050762 \\\\\n",
+      "   PCA &  KNN &  0.140644 &  0.052517 &  0.026873 &  0.220850 &  0.081427 \\\\\n",
+      "   PCA &  LDA &  0.175099 &  0.055029 &  0.045930 &  0.161503 &  0.083973 \\\\\n",
+      "   PCA &  SVM &  0.014927 &  0.047951 &  0.038673 &  0.245791 &  0.091864 \\\\\n",
+      "   PCA &   RF &  0.045601 &  0.026323 &  0.018696 &  0.139793 &  0.044522 \\\\\n",
+      "   NMF &  KNN &  0.114299 &  0.043058 &  0.028528 &  0.177820 &  0.079545 \\\\\n",
+      "   NMF &  LDA &  0.178244 &  0.058666 &  0.046366 &  0.166222 &  0.085643 \\\\\n",
+      "   NMF &  SVM &  0.016406 &  0.007813 &  0.007689 &  0.010789 &  0.011692 \\\\\n",
+      "   NMF &   RF &  0.062992 &  0.032214 &  0.020364 &  0.125504 &  0.041552 \\\\\n",
+      " SSNMF &  KNN &  0.143227 &  0.043130 &  0.015224 &  0.227101 &  0.071541 \\\\\n",
+      " SSNMF &  LDA &  0.183202 &  0.053345 &  0.038873 &  0.165382 &  0.081976 \\\\\n",
+      " SSNMF &  SVM &  0.020578 &  0.010654 &  0.005361 &  0.018492 &  0.013882 \\\\\n",
+      " SSNMF &   RF &  0.045372 &  0.031229 &  0.018112 &  0.115558 &  0.035013 \\\\\n",
+      "    NA &  KNN &  0.140075 &  0.051532 &  0.027336 &  0.221769 &  0.081473 \\\\\n",
+      "    NA &  LDA &  0.176954 &  0.059945 &  0.037882 &  0.191218 &  0.083935 \\\\\n",
+      "    NA &  SVM &  0.014949 &  0.046862 &  0.038291 &  0.250269 &  0.088124 \\\\\n",
+      "    NA &   RF &  0.082653 &  0.039876 &  0.031718 &  0.113553 &  0.058601 \\\\\n",
+      "\\bottomrule\n",
+      "\\end{tabular}\n",
+      "\n",
+      "\\begin{tabular}{llrrrrr}\n",
+      "\\toprule\n",
+      "     0 &    1 &         2 &         3 &         4 &         5 &         6 \\\\\n",
+      "\\midrule\n",
+      "   LDA &  LDA &  0.320670 &  0.150313 &  0.070247 &  0.198583 &  0.107355 \\\\\n",
+      " SSNMF &  LDA &  0.183202 &  0.053345 &  0.038873 &  0.165382 &  0.081976 \\\\\n",
+      "   NMF &  LDA &  0.178244 &  0.058666 &  0.046366 &  0.166222 &  0.085643 \\\\\n",
+      "    NA &  LDA &  0.176954 &  0.059945 &  0.037882 &  0.191218 &  0.083935 \\\\\n",
+      "   PCA &  LDA &  0.175099 &  0.055029 &  0.045930 &  0.161503 &  0.083973 \\\\\n",
+      "   LDA &  KNN &  0.151978 &  0.054739 &  0.023233 &  0.281734 &  0.085792 \\\\\n",
+      " SSNMF &  KNN &  0.143227 &  0.043130 &  0.015224 &  0.227101 &  0.071541 \\\\\n",
+      "   PCA &  KNN &  0.140644 &  0.052517 &  0.026873 &  0.220850 &  0.081427 \\\\\n",
+      "    NA &  KNN &  0.140075 &  0.051532 &  0.027336 &  0.221769 &  0.081473 \\\\\n",
+      "   NMF &  KNN &  0.114299 &  0.043058 &  0.028528 &  0.177820 &  0.079545 \\\\\n",
+      "    NA &   RF &  0.082653 &  0.039876 &  0.031718 &  0.113553 &  0.058601 \\\\\n",
+      "   LDA &   RF &  0.070768 &  0.031118 &  0.016848 &  0.150029 &  0.050762 \\\\\n",
+      "   NMF &   RF &  0.062992 &  0.032214 &  0.020364 &  0.125504 &  0.041552 \\\\\n",
+      "   PCA &   RF &  0.045601 &  0.026323 &  0.018696 &  0.139793 &  0.044522 \\\\\n",
+      " SSNMF &   RF &  0.045372 &  0.031229 &  0.018112 &  0.115558 &  0.035013 \\\\\n",
+      "   LDA &  SVM &  0.023110 &  0.078763 &  0.050069 &  0.296356 &  0.089610 \\\\\n",
+      " SSNMF &  SVM &  0.020578 &  0.010654 &  0.005361 &  0.018492 &  0.013882 \\\\\n",
+      "   NMF &  SVM &  0.016406 &  0.007813 &  0.007689 &  0.010789 &  0.011692 \\\\\n",
+      "    NA &  SVM &  0.014949 &  0.046862 &  0.038291 &  0.250269 &  0.088124 \\\\\n",
+      "   PCA &  SVM &  0.014927 &  0.047951 &  0.038673 &  0.245791 &  0.091864 \\\\\n",
+      "\\bottomrule\n",
+      "\\end{tabular}\n",
+      "\n"
      ]
     }
    ],
    "source": [
-    "classification.RANDOM_STATE = 55\n",
-    "df_results = classification.classify_for_filenames(file_list=mapper.OUTPUT_FILES)\n",
-    "print df_results.to_latex()"
+    "print df_results.to_latex(index=False)\n",
+    "# sort by 'all'\n",
+    "df_results_sorted = df_results.sort_values(2, ascending=False, inplace=False)\n",
+    "df_results_sorted.head()\n",
+    "print df_results_sorted.to_latex(index=False)"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 43,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -373,9 +476,7 @@
   {
    "cell_type": "code",
    "execution_count": 46,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -454,9 +555,7 @@
   {
    "cell_type": "code",
    "execution_count": 48,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stderr",
@@ -668,9 +767,7 @@
   {
    "cell_type": "code",
    "execution_count": 53,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
@@ -726,9 +823,7 @@
   {
    "cell_type": "code",
    "execution_count": 55,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -748,9 +843,7 @@
   {
    "cell_type": "code",
    "execution_count": 62,
-   "metadata": {
-    "collapsed": false
-   },
+   "metadata": {},
    "outputs": [
     {
      "data": {