Mercurial > hg > plosone_underreview
comparison notebooks/sensitivity_experiment.ipynb @ 18:ed109218dd4b branch-tests
rename result scripts and more tests
author | Maria Panteli |
---|---|
date | Tue, 12 Sep 2017 23:18:19 +0100 |
parents | 2e487b9c0a7b |
children | 0bba6f63f4fd |
comparison
equal
deleted
inserted
replaced
17:2e487b9c0a7b | 18:ed109218dd4b |
---|---|
25 "\n", | 25 "\n", |
26 "import sys\n", | 26 "import sys\n", |
27 "sys.path.append('../')\n", | 27 "sys.path.append('../')\n", |
28 "import scripts.load_dataset as load_dataset\n", | 28 "import scripts.load_dataset as load_dataset\n", |
29 "import scripts.map_and_average as mapper\n", | 29 "import scripts.map_and_average as mapper\n", |
30 "import scripts.results_classification as results_class\n", | 30 "import scripts.classification\n", |
31 "import scripts.results as results" | 31 "import scripts.outliers as outliers" |
32 ] | 32 ] |
33 }, | 33 }, |
34 { | 34 { |
35 "cell_type": "code", | 35 "cell_type": "code", |
36 "execution_count": 4, | 36 "execution_count": 4, |
72 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", | 72 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", |
73 " X = np.concatenate(ldadata_list)\n", | 73 " X = np.concatenate(ldadata_list)\n", |
74 " \n", | 74 " \n", |
75 " # classification and confusion\n", | 75 " # classification and confusion\n", |
76 " print \"classifying...\"\n", | 76 " print \"classifying...\"\n", |
77 " traininds, testinds = results_class.get_train_test_indices()\n", | 77 " traininds, testinds = classification.get_train_test_indices()\n", |
78 " X_train, Y_train, X_test, Y_test = results_class.get_train_test_sets(X, Y, traininds, testinds)\n", | 78 " X_train, Y_train, X_test, Y_test = classification.get_train_test_sets(X, Y, traininds, testinds)\n", |
79 " accuracy, _ = results_class.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)\n", | 79 " accuracy, _ = classification.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)\n", |
80 " print accuracy\n", | 80 " print accuracy\n", |
81 " \n", | 81 " \n", |
82 " # outliers\n", | 82 " # outliers\n", |
83 " print \"detecting outliers...\"\n", | 83 " print \"detecting outliers...\"\n", |
84 " ddf = results.load_metadata(Yaudio, metadata_file=load_dataset.METADATA_FILE)\n", | 84 " ddf = outliers.load_metadata(Yaudio, metadata_file=load_dataset.METADATA_FILE)\n", |
85 " df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)\n", | 85 " df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)\n", |
86 " print_most_least_outliers_topN(df_global, N=10)\n", | 86 " print_most_least_outliers_topN(df_global, N=10)\n", |
87 " \n", | 87 " \n", |
88 " # write output\n", | 88 " # write output\n", |
89 " print \"writing file\"\n", | 89 " print \"writing file\"\n", |