comparison notebooks/sensitivity_experiment.ipynb @ 18:ed109218dd4b branch-tests

rename result scripts and more tests
author Maria Panteli
date Tue, 12 Sep 2017 23:18:19 +0100
parents 2e487b9c0a7b
children 0bba6f63f4fd
comparison
equal deleted inserted replaced
17:2e487b9c0a7b 18:ed109218dd4b
25 "\n", 25 "\n",
26 "import sys\n", 26 "import sys\n",
27 "sys.path.append('../')\n", 27 "sys.path.append('../')\n",
28 "import scripts.load_dataset as load_dataset\n", 28 "import scripts.load_dataset as load_dataset\n",
29 "import scripts.map_and_average as mapper\n", 29 "import scripts.map_and_average as mapper\n",
30 "import scripts.results_classification as results_class\n", 30 "import scripts.classification\n",
31 "import scripts.results as results" 31 "import scripts.outliers as outliers"
32 ] 32 ]
33 }, 33 },
34 { 34 {
35 "cell_type": "code", 35 "cell_type": "code",
36 "execution_count": 4, 36 "execution_count": 4,
72 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", 72 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n",
73 " X = np.concatenate(ldadata_list)\n", 73 " X = np.concatenate(ldadata_list)\n",
74 " \n", 74 " \n",
75 " # classification and confusion\n", 75 " # classification and confusion\n",
76 " print \"classifying...\"\n", 76 " print \"classifying...\"\n",
77 " traininds, testinds = results_class.get_train_test_indices()\n", 77 " traininds, testinds = classification.get_train_test_indices()\n",
78 " X_train, Y_train, X_test, Y_test = results_class.get_train_test_sets(X, Y, traininds, testinds)\n", 78 " X_train, Y_train, X_test, Y_test = classification.get_train_test_sets(X, Y, traininds, testinds)\n",
79 " accuracy, _ = results_class.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)\n", 79 " accuracy, _ = classification.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)\n",
80 " print accuracy\n", 80 " print accuracy\n",
81 " \n", 81 " \n",
82 " # outliers\n", 82 " # outliers\n",
83 " print \"detecting outliers...\"\n", 83 " print \"detecting outliers...\"\n",
84 " ddf = results.load_metadata(Yaudio, metadata_file=load_dataset.METADATA_FILE)\n", 84 " ddf = outliers.load_metadata(Yaudio, metadata_file=load_dataset.METADATA_FILE)\n",
85 " df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)\n", 85 " df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)\n",
86 " print_most_least_outliers_topN(df_global, N=10)\n", 86 " print_most_least_outliers_topN(df_global, N=10)\n",
87 " \n", 87 " \n",
88 " # write output\n", 88 " # write output\n",
89 " print \"writing file\"\n", 89 " print \"writing file\"\n",