comparison scripts/results.py @ 4:e50c63cf96be branch-tests

rearranging folders
author Maria Panteli
date Mon, 11 Sep 2017 11:51:50 +0100
parents
children 0f3eba42b425
comparison
equal deleted inserted replaced
3:230a0cf17de0 4:e50c63cf96be
1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jul 12 20:49:48 2016
4
5 @author: mariapanteli
6 """
7
8 import numpy as np
9 import pandas as pd
10 import pickle
11 from collections import Counter
12 from sklearn.cluster import KMeans
13
14 import utils
15 import utils_spatial
16
17
18 def country_outlier_df(counts, labels, out_file=None, normalize=False):
19 if len(counts.keys()) < len(np.unique(labels)):
20 for label in np.unique(labels):
21 if not counts.has_key(label):
22 counts.update({label:0})
23 if normalize is True:
24 counts = normalize_outlier_counts(counts, Counter(labels))
25 df = pd.DataFrame.from_dict(counts, orient='index').reset_index()
26 df.rename(columns={'index':'Country', 0:'Outliers'}, inplace=True)
27 if out_file is not None:
28 df.to_csv(out_file, index=False)
29 return df
30
31
32 def normalize_outlier_counts(outlier_counts, country_counts):
33 '''Normalize a dictionary of outlier counts per country by
34 the total number of recordings per country
35 '''
36 for key in outlier_counts.keys():
37 # dictionaries should have the same keys
38 outlier_counts[key] = float(outlier_counts[key]) / float(country_counts[key])
39 return outlier_counts
40
41
42 def get_outliers_df(X, Y, chi2thr=0.999, out_file=None):
43 threshold, y_pred, MD = utils.get_outliers_Mahal(X, chi2thr=chi2thr)
44 global_counts = Counter(Y[y_pred])
45 df = country_outlier_df(global_counts, Y, normalize=True)
46 if out_file is not None:
47 df.to_csv(out_file, index=False)
48 return df, threshold, MD
49
50
51 def print_most_least_outliers_topN(df, N=10):
52 sort_inds = df['Outliers'].argsort() # ascending order
53 df_most = df[['Country', 'Outliers']].iloc[sort_inds[::-1][:N]]
54 df_least = df[['Country', 'Outliers']].iloc[sort_inds[:N]]
55 print "most outliers "
56 print df_most
57 print "least outliers "
58 print df_least
59
60
61 def load_metadata(Yaudio, metadata_file):
62 df = pd.read_csv(metadata_file)
63 df_audio = pd.DataFrame({'Audio':Yaudio})
64 ddf = pd.merge(df_audio, df, on='Audio', suffixes=['', '_r']) # in the order of Yaudio
65 return ddf
66
67
68 def clusters_metadata(df, cl_pred, out_file=None):
69 def get_top_N_counts(labels, N=3):
70 ulab, ucount = np.unique(labels, return_counts=True)
71 inds = np.argsort(ucount)
72 return zip(ulab[inds[-N:]],ucount[inds[-N:]])
73 info = np.array([str(df['Country'].iloc[i]) for i in range(len(df))])
74 styles_description = []
75 uniq_cl = np.unique(cl_pred)
76 for ccl in uniq_cl:
77 inds = np.where(cl_pred==ccl)[0]
78 styles_description.append(get_top_N_counts(info[inds], N=3))
79 df_styles = pd.DataFrame(data=styles_description, index=uniq_cl)
80 print df_styles.to_latex()
81 if out_file is not None:
82 df_styles.to_csv(out_file, index=False)
83
84
85 # load LDA-transformed frames
86 X_list, Y, Yaudio = pickle.load(open('data/lda_data_8.pickle','rb'))
87 ddf = load_metadata(Yaudio, metadata_file='data/metadata.csv')
88 w, data_countries = utils_spatial.get_neighbors_for_countries_in_dataset(Y)
89 w_dict = utils_spatial.from_weights_to_dict(w, data_countries)
90 Xrhy, Xmel, Xmfc, Xchr = X_list
91 X = np.concatenate((Xrhy, Xmel, Xmfc, Xchr), axis=1)
92
93 # global outliers
94 df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)
95 print_most_least_outliers_topN(df_global, N=10)
96
97 spatial_outliers = utils.get_local_outliers_from_neighbors_dict(X, Y, w_dict, chi2thr=0.999, do_pca=True)
98 spatial_counts = Counter(dict([(ll[0],ll[1]) for ll in spatial_outliers]))
99 df_local = country_outlier_df(spatial_counts, Y, normalize=True)
100 print_most_least_outliers_topN(df_local, N=10)
101
102 feat = [Xrhy, Xmel, Xmfc, Xchr]
103 feat_labels = ['rhy', 'mel', 'mfc', 'chr']
104 tabs_feat = []
105 for i in range(len(feat)):
106 XX = feat[i]
107 df_feat, threshold, MD = get_outliers_df(XX, Y, chi2thr=0.999)
108 print_most_least_outliers_topN(df_feat, N=5)
109
110 # how many styles are there
111 #bestncl, ave_silh = utils.best_n_clusters_silhouette(X, min_ncl=5, max_ncl=50, metric="cosine")
112 bestncl = 13
113
114 # get cluster predictions and metadata for each cluster
115 cluster_model = KMeans(n_clusters=bestncl, random_state=50).fit(X)
116 centroids = cluster_model.cluster_centers_
117 cl_pred = cluster_model.predict(X)
118 ddf['Clusters'] = cl_pred
119 clusters_metadata(ddf, cl_pred)
120
121 # how similar are the cultures and which ones seem to be global outliers
122 cluster_freq = utils.get_cluster_freq_linear(X, Y, centroids)
123
124 # Moran on Mahalanobis distances
125 data = cluster_freq.get_values()
126 data_countries = cluster_freq.index
127 #threshold, y_pred, MD = utils.get_outliers_Mahal(data, chi2thr=0.999)
128 threshold, y_pred, MD = utils.get_outliers(data, chi2thr=0.999)
129 y = np.sqrt(MD)
130 utils_spatial.print_Moran_outliers(y, w, data_countries)
131 utils_spatial.plot_Moran_scatterplot(y, w, data_countries)