comparison scripts_R/MetadataPlots.R @ 76:d17833be50ca branch-tests

merged
author Maria Panteli <m.x.panteli@gmail.com>
date Fri, 22 Sep 2017 16:30:36 +0100
parents cc028157502a
children bde45ce0eeab
comparison
equal deleted inserted replaced
75:02faad4a996b 76:d17833be50ca
1 library(rworldmap)
2 library(ggplot2)
3
4 PlotBarChart<- function(df, cat="Language", ordercat="REGION", mincount=10, legend=T, color_plt="Paired"){
5 idx_cat = which(colnames(df)==cat)
6 idx_ordercat = which(colnames(df)==ordercat)
7 dfsub <- subset(df, df[,idx_cat]!="")
8 dfsub <- dfsub[ dfsub[,idx_cat] %in% names(table(dfsub[,idx_cat]))[table(dfsub[,idx_cat]) >mincount] , ]
9 #dfsub <- dfsub[order(dfsub$REGION.y),]
10 dfsub <- dfsub[order(dfsub[,idx_ordercat]),]
11 dfsub[,idx_cat] <- factor(dfsub[,idx_cat], levels=unique(dfsub[,idx_cat]))
12 g = ggplot(dfsub,aes(dfsub[,idx_cat], fill=dfsub[,idx_ordercat], order=-as.numeric(dfsub[,idx_ordercat])))+geom_bar()
13 #g = g+ylim("0", "100")#+scale_y_discrete(breaks=c("100"),labels=c("100+"))
14 g=g+scale_y_continuous(limits=c(0, 200), breaks=seq(0,200,40))
15 g=g+scale_fill_brewer(palette=color_plt)
16 g=g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
17 g=g+labs(y="Counts",x=cat)+coord_flip()+theme_bw()
18 if (legend){
19 g=g+guides(fill = guide_legend(title = ordercat))}
20 else{
21 g=g+guides(fill="none")
22 }
23 return(g)
24 }
25
26 PlotCountryNCounts <- function(df, mincount=10){
27 countrycounts = table(df$Country)
28 dd=data.frame(countrycounts)
29 names(dd)=c("Country","Counts")
30 cols <- rep(2, dim(dd)[1])
31 cols[dd$Counts<mincount]=1
32 dd$NCounts = cols
33 spdf<-joinCountryData2Map(dd,joinCode="NAME",nameCountryColumn="Country",nameJoinColumn="Country")
34 mapParams <- mapCountryData(spdf, nameColumnToPlot="NCounts",catMethod='categorical',missingCountryCol="grey",oceanCol="lightblue",colourPalette='heat', mapTitle=paste("Country sample size, n_recordings>",mincount),addLegend=F)
35 mapParams$legendText <- c(paste('<',mincount),paste('>=',mincount),'na')
36 do.call(addMapLegendBoxes, c(mapParams,x='bottomleft'))
37 }
38
39 PlotCountryCounts <- function(df, output=F){
40 countrycounts = table(df$Country)
41 dd=data.frame(countrycounts)
42 names(dd)=c("Country","Counts")
43 spdf<-joinCountryData2Map(dd,joinCode="NAME",nameCountryColumn="Country",nameJoinColumn="Country")
44 spdf<-spdf[-which(spdf$ADMIN=='Antarctica'),]
45 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=as.numeric(levels(as.factor(spdf$Counts))),missingCountryCol='grey',borderCol='black',oceanCol="white",colourPalette='heat', mapTitle="",addLegend=F)
46 mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=seq(10,100,10),missingCountryCol='grey',borderCol='black',oceanCol="white",colourPalette="heat", mapTitle="",addLegend=F)
47 #do.call( addMapLegend, c(mapParams, labelFontSize=0.7, legendShrink=0.5,legendWidth=0.5, tcl=0.3, legendMar = 7, legendLabels="all",horizontal=T, legendIntervals="page"))
48 legend("left", legend = c(paste(seq(90,1,-10),'-',seq(100,11,-10)), 'NA'), fill = c(heat.colors(9, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white")
49 if (output){
50 pdf(file="countrycounts.pdf")
51 mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=seq(10,100,10),missingCountryCol='grey',borderCol='black',oceanCol="white",colourPalette="heat", mapTitle="",addLegend=F)
52 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=as.numeric(levels(as.factor(spdf$Counts))),missingCountryCol='grey',borderCol='black',oceanCol="lightblue",colourPalette='heat', mapTitle="",addLegend=F)
53 #do.call( addMapLegend, c(mapParams, labelFontSize=0.7, legendShrink=0.5,legendWidth=0.5, tcl=0.3, legendMar = 7, legendLabels="all",horizontal=T, legendIntervals="page"))
54 legend("left", legend = c(paste(seq(90,1,-10),'-',seq(100,11,-10)), 'NA'), fill = c(heat.colors(9, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white")
55 dev.off()
56 }
57 }
58
59 PlotYearDistribution <- function(df, output=F){
60 df$Year<-as.numeric(as.character(df$Year))
61 g = ggplot(df,aes(x=Year,y=..count..))+geom_histogram(breaks=seq(1895, 2015, by = 1))
62 #g = ggplot(df,aes(x=Year,y=..count..))+geom_bar()+geom_density(alpha=.3, fill="grey")
63 #g = g+scale_x_continuous(breaks = pretty(df$Year, n=10))
64 g = g+theme_bw()+labs(x ='Year', y ='Count')
65 #g = ggplot(df,aes(x=Year,y=..count..))+geom_histogram()+theme_bw()
66 print(g)
67 if (output){
68 ggsave('yeardistribution.pdf',plot=g)
69 }
70 }
71
72 PlotCountryDistribution <- function(df){
73 #countrycounts = table(df$Country)
74 #dd=data.frame(countrycounts)
75 #names(dd)=c("Country","Counts")
76 g = ggplot(df,aes(x=Country))+geom_bar()
77 g=g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
78 }
79
80 #PlotCultureDistribution <- function(df){
81 # g = ggplot(df,aes(x=Culture))+geom_bar()
82 # g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
83 #}
84
85 PlotLanguageDistribution <- function(df, mincount=1){
86 dfsubset <- subset(df, df$Language!="") # ignore the recordings culture info
87 culturecounts = table(dfsubset$Culture)
88 culturecounts = culturecounts[culturecounts>=mincount]
89 barplot(culturecounts, las=2, cex.names=0.2)
90 #g = ggplot(df,aes(x=Language))+geom_bar()
91 #g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
92 }
93
94 PlotBarForCategory <- function(df, cat="Language", mincount=1){
95 idx_cat = which(colnames(df)==cat)
96 dfsubset <- subset(df, df[,idx_cat]!="")
97 counts = table(dfsubset[,idx_cat])
98 counts = counts[counts>=mincount]
99 barplot(counts, las=2, cex.names=0.2)
100 #g = ggplot(df,aes(x=Language))+geom_bar()
101 #g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
102 }
103
104 PlotCountryYearCutoff <- function(df, cutoffyear=1960){
105 df$BeforeYear = df$Year<cutoffyear
106 dfsubset <- subset(df, BeforeYear==T)
107 countrycounts = table(dfsubset$Country)
108 dd=data.frame(countrycounts)
109 names(dd)=c("Country","Counts")
110 spdf<-joinCountryData2Map(dd,joinCode="NAME",nameCountryColumn="Country",nameJoinColumn="Country")
111 mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=as.numeric(levels(as.factor(spdf$Counts))),missingCountryCol='grey',oceanCol="lightblue",colourPalette='heat', mapTitle=paste("Country sample size, year<",cutoffyear),addLegend=F)
112 do.call( addMapLegend, c(mapParams, labelFontSize=0.3, legendWidth=0.5, tcl=-0.3, legendMar = 4, legendLabels="all",horizontal=F, legendIntervals="page"))
113 }
114
115 #dftemp$Decade<-floor(df$Year/10)*10
116 #yearcounts = sapply(levels(dftemp$Country),function(x)table(subset(dftemp,Country==x)$Before1960))
117 #decadecounts = sapply(levels(df$Country),function(x)table(subset(dftemp,Country==x & Before1960=="TRUE")$Before1960))
118 #print(yearcounts)
119
120 #metadata we are interested in:
121 #Artist,AlbumTitle,Culture, Language/Language_Album, Subject_Album
122 PlotCountryCulture <- function(df){
123 dfsubset <- subset(df, df$Culture!="")
124 countrycounts = table(dfsubset$Country)
125 dd=data.frame(countrycounts)
126 names(dd)=c("Country","Counts")
127 spdf<-joinCountryData2Map(dd,joinCode="NAME",nameCountryColumn="Country",nameJoinColumn="Country")
128 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod=as.numeric(levels(as.factor(spdf$Counts))),missingCountryCol='grey',oceanCol="lightblue",colourPalette='heat', mapTitle="Recordings with culture information",addLegend=F)
129 mapParams <- mapCountryData(spdf, nameColumnToPlot="Counts",catMethod="logFixedWidth",missingCountryCol='grey',oceanCol="lightblue",colourPalette='heat', mapTitle="Number of recordings with culture information",addLegend=F)
130 do.call( addMapLegend, c(mapParams, labelFontSize=0.3, legendWidth=0.5, tcl=-0.3, legendMar = 4, legendLabels="all",horizontal=F, legendIntervals="page"))
131 }
132
133 PlotCultureDistribution <- function(df){
134 dfsubset <- subset(df, df$Culture!="") # ignore the recordings culture info
135 culturecounts = table(dfsubset$Culture)
136 barplot(culturecounts, las=2, cex.names=0.2)
137 #g = ggplot(df,aes(x=Year,y=..count..))+geom_histogram(breaks=seq(1875, 2015, by = 1))
138 #print(g)
139 }
140
141 PlotCountryNCulture <- function(df){
142 dfsubset <- subset(df, df$Culture!="")
143 #culturecounts = table(dfsubset$Culture)
144 countrycounts = table(dfsubset$Country, dfsubset$Culture)
145 aa <- addmargins(countrycounts, FUN = list(Total = sum), quiet = TRUE)
146 print(paste(">1000",row.names(aa)[aa[,dim(aa)[2]]>1000]))
147 print(paste(">500",row.names(aa)[aa[,dim(aa)[2]]>500]))
148 print(paste(">100",row.names(aa)[aa[,dim(aa)[2]]>100]))
149 inds = which(aa[,dim(aa)[2]]>500 & row.names(aa)!="Total")
150 mosaicplot(aa[inds,1:5])
151 dd=data.frame(countrycounts[inds,])
152 dd=data.frame(countrycounts)
153 names(dd)=c("Country","Culture","Counts")
154 ddsub <- subset(dd, (Country=="Canada"| Country=="United Kingdom" | Country=="United States of America") & Counts>20)
155 g=ggplot(ddsub, aes(x=Culture,y=Counts))+geom_point()+facet_wrap(~Country, scales = "free")
156 g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))
157 }
158
159 PlotCountryCultureNcounts <- function(df,mincount=50){
160 dfsubset <- subset(df, df$Culture!="")
161 #culturecounts = table(dfsubset$Culture)
162 countrycounts = table(dfsubset$Country, dfsubset$Culture)
163 dd=data.frame(countrycounts)
164 names(dd)=c("Country","Culture","Counts")
165 ddsub <- subset(dd, Counts>mincount)
166 g=ggplot(ddsub, aes(x=Culture,y=Counts))+geom_point()+facet_wrap(~Country, scales = "free")
167 g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))#+title(main=paste("Cultures per country, count>",mincount))
168 }
169
170 PlotCountryLanguageNcounts <- function(df,mincount=50){
171 dfsubset <- subset(df, df$Language!="" & df$Language!=" ")
172 countrycounts = table(dfsubset$Country, dfsubset$Language)
173 dd=data.frame(countrycounts)
174 names(dd)=c("Country","Language","Counts")
175 ddsub <- subset(dd, Counts>mincount)
176 g=ggplot(ddsub, aes(x=Language,y=Counts))+geom_point()+facet_wrap(~Country, scales = "free")
177 g+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))#+title(main=paste("Cultures per country, count>",mincount))
178 }
179
180 PlotNxNcounts <- function(df, cat1="Country", cat2="Culture", mincount=50, figname=""){
181 indcat1 = which(colnames(df)==cat1)
182 indcat2 = which(colnames(df)==cat2)
183 dfsubset <- subset(df, df[,indcat1]!="" & df[,indcat2]!="") # avoid nan values
184 NNcounts <- table(dfsubset[,indcat1], dfsubset[,indcat2])
185 dd=data.frame(NNcounts)
186 names(dd) <- c("Cat1","Cat2","Counts")
187 ddsub <- subset(dd, Counts>mincount)
188 if (figname==""){
189 g=ggplot(ddsub, aes(x=Cat2,y=Counts))+geom_point()+facet_wrap(~Cat1)
190 g+coord_flip()+theme(axis.text.y=element_text(hjust=1,vjust=0.5,size=5))+labs(y="Counts",x=cat2)
191 }else{
192 g=ggplot(ddsub, aes(x=Cat2,y=Counts))+geom_point()+facet_wrap(~Cat1)
193 g+coord_flip()+theme(axis.text.y=element_text(hjust=1,vjust=0.5,size=5))+labs(y="Counts",x=cat2)
194 ggsave(figname)
195 }
196 }
197
198 Wordcloud<- function(df, cat="Language", output=F){
199 require(wordcloud)
200 require(RColorBrewer)
201 ind_cat = which(colnames(df)==cat)
202 counts <- table(df[,ind_cat])
203 dd=data.frame(counts)
204 names(dd) <- c("words","freq")
205 pal2 <- brewer.pal(8,"Dark2")
206 wordcloud(dd$words,dd$freq,random.order=FALSE, colors=pal2)
207 if (output){
208 pdf("wordcloud.pdf")
209 wordcloud(dd$words,dd$freq,random.order=FALSE, colors=pal2)
210 dev.off()
211 }
212 }
213 PlotCountryOutliers <- function(df, output=''){
214 par(mar = rep(2, 4))
215 spdf<-joinCountryData2Map(df,joinCode="NAME",nameCountryColumn="Country",nameJoinColumn="Country")
216 spdf<-spdf[-which(spdf$ADMIN=='Antarctica'),]
217 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers",catMethod=seq(0,70,5),missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
218 mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers", catMethod=seq(0,1,0.1), missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
219 # avoid antarctica
220 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers", ylim=c(-60,90), catMethod=seq(0,1,0.1), missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
221 #do.call( addMapLegend, c(mapParams, labelFontSize=0.7, legendWidth=0.5, tcl=0.3, legendMar = 7, legendLabels="all",horizontal=T, legendIntervals="page"))
222 legend("left", legend = c(paste(seq(90,0,-10),'-',seq(100,10,-10),'%'), 'NA'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white")
223 if (output!=''){
224 pdf(output)
225 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers",catMethod=seq(0,70,5),missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
226 mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers", catMethod=seq(0,1,0.1), missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
227 #mapParams <- mapCountryData(spdf, nameColumnToPlot="Outliers", ylim=c(-60,90), catMethod=seq(0,1,0.1), missingCountryCol='grey',colourPalette='heat', mapTitle="", addLegend=FALSE)
228 #do.call( addMapLegend, c(mapParams, labelFontSize=0.7, legendWidth=0.5, tcl=0.3, legendMar=7, legendLabels="all",horizontal=T, legendIntervals="page"))
229 legend("left", legend = c(paste(seq(90,0,-10),'-',seq(100,10,-10),'%'), 'NA'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white")
230 dev.off()
231 }
232 else {
233 return(mapParams)
234 }
235 }