comparison scripts_R/Metadata_subsetBLSM.R @ 77:bde45ce0eeab branch-tests

plots and figures for results
author Maria Panteli <m.x.panteli@gmail.com>
date Fri, 22 Sep 2017 18:02:59 +0100
parents cc028157502a
children d3e05cd49feb
comparison
equal deleted inserted replaced
76:d17833be50ca 77:bde45ce0eeab
1 #df = read.csv("/Users/mariapanteli/Documents/2014-2015/Python/pythoncode/MergeBL-Smith/data/df_BLSM.csv",header=TRUE) 1 df = read.csv('../data/results/df_and_clusters.csv', header=T)
2 #df = read.csv("data/df_subset_remove.csv",header=TRUE)
3 #df = read.csv("/Users/mariapanteli/Documents/2014-2015/Python/pythoncode/CodeForBL/data/metadataBL_new.csv",header=TRUE)
4 #df = read.csv("/Users/mariapanteli/Documents/2014-2015/Python/pythoncode/MergeBL-Smith/data/metadata_BLSM.csv",header=TRUE)
5 #df = df[1:29182,] # BL data
6 df = read.csv('data/df_and_clusters.csv', header=T)
7 2
8 source("MetadataPlots.R") 3 source("MetadataPlots.R")
9 4
10 ## for plos use arial 5 ## for plos use arial
11 #install.packages("extrafont") 6 #install.packages("extrafont")
15 Arial <- Type1Font(family="Arial", metrics=c("ArialMT.afm","arial-BoldMT.afm","Arial-ItalicMT.afm", "Arial-BoldItalicMT.afm")) 10 Arial <- Type1Font(family="Arial", metrics=c("ArialMT.afm","arial-BoldMT.afm","Arial-ItalicMT.afm", "Arial-BoldItalicMT.afm"))
16 postscriptFonts(Arial=Arial) 11 postscriptFonts(Arial=Arial)
17 par(family="Arial") 12 par(family="Arial")
18 13
19 #pdf(file="data/country_distribution_BL.pdf") 14 #pdf(file="data/country_distribution_BL.pdf")
20 pdf(file="data/country_distribution.pdf") 15 pdf(file="../data/results/country_distribution.pdf")
21 PlotCountryCounts(df) 16 PlotCountryCounts(df)
22 dev.off() 17 dev.off()
23 postscript(file="data/country_distribution.eps") 18 postscript(file="../data/results/country_distribution.eps")
24 PlotCountryCounts(df) 19 PlotCountryCounts(df)
25 dev.off() 20 dev.off()
26 21
27 pdf(file="data/year_distribution.pdf", width=6, height=4) 22 pdf(file="../data/results/year_distribution.pdf", width=6, height=4)
28 PlotYearDistribution(df) 23 PlotYearDistribution(df)
29 dev.off() 24 dev.off()
30 postscript("data/year_distribution.eps", width=10) 25 postscript("../data/results/year_distribution.eps", width=10)
31 PlotYearDistribution(df) 26 PlotYearDistribution(df)
32 dev.off() 27 dev.off()
33 #PlotBarChart(df, cat="Year", ordercat="REGION", mincount=10) 28 #PlotBarChart(df, cat="Year", ordercat="REGION", mincount=10)
34 29
35 #pdf(file="data/language_distribution_BL.pdf") 30 #pdf(file="data/language_distribution_BL.pdf")
36 levels(df$Language)[which(levels(df$Language)=="Southwestern Caribbean Creole English")]="SouthW Carib. Creole English" 31 levels(df$Language)[which(levels(df$Language)=="Southwestern Caribbean Creole English")]="SouthW Carib. Creole English"
37 df$Language[which(df$Language=="Southwestern Caribbean Creole English")] = "SouthW Carib. Creole English" 32 df$Language[which(df$Language=="Southwestern Caribbean Creole English")] = "SouthW Carib. Creole English"
38 levels(df$Language)[which(levels(df$Language)=="Lesser Antillean Creole French")]="Lesser Antil. Creole French" 33 levels(df$Language)[which(levels(df$Language)=="Lesser Antillean Creole French")]="Lesser Antil. Creole French"
39 df$Language[which(df$Language=="Lesser Antillean Creole French")] = "Lesser Antil. Creole French" 34 df$Language[which(df$Language=="Lesser Antillean Creole French")] = "Lesser Antil. Creole French"
40 df$REGION[which(df$Country=="French Guiana")] = "South America" 35 df$REGION[which(df$Country=="French Guiana")] = "South America"
41 pdf(file="data/language_distribution.pdf") 36 pdf(file="../data/results/language_distribution.pdf")
42 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10) 37 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10)
43 dev.off() 38 dev.off()
44 postscript("data/language_distribution.eps", width=8, height=10) 39 postscript("../data/results/language_distribution.eps", width=8, height=10)
45 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10) 40 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10)
46 dev.off() 41 dev.off()
47 42
48 #language phylogeny 43 df = read.csv('../data/results/df_and_clusters.csv', header=T)
49 df = read.csv('data/metadata_BLSM_language.csv', header=T)
50 pdf(file="data/language_iso3_iso1.pdf")
51 PlotBarChart(df, cat="Language_iso3", ordercat="Language_iso1", mincount=10)
52 dev.off()
53
54 # PlotCountryCounts(df)
55 # PlotCountryCultureNcounts(df, mincount=20)
56 # PlotCountryLanguageNcounts(df, mincount=20)
57 # PlotYearDistribution(df)
58 # PlotLanguageDistribution(df)
59 # PlotCultureDistribution(df)
60 # PlotNxNcounts(df, cat1="Country", cat2="Genre_Album", mincount=20)
61
62 df = read.csv('data/df_and_clusters.csv', header=T)
63 #PlotBarChart(df, cat="Clusters", ordercat="CountryLang", mincount=1,legend=F) 44 #PlotBarChart(df, cat="Clusters", ordercat="CountryLang", mincount=1,legend=F)
64 df$REGION[which(df$Country=="French Guiana")] = "South America" 45 df$REGION[which(df$Country=="French Guiana")] = "South America"
65 g = ggplot(df,aes(df$Clusters, fill=df$REGION))+geom_bar() 46 g = ggplot(df,aes(df$Clusters, fill=df$REGION))+geom_bar()
66 levels(df$REGION)[which(levels(df$REGION)=="South America")]="S. America" 47 levels(df$REGION)[which(levels(df$REGION)=="South America")]="S. America"
67 levels(df$REGION)[which(levels(df$REGION)=="North America")]="N. America" 48 levels(df$REGION)[which(levels(df$REGION)=="North America")]="N. America"
70 #wrld = getMap() 51 #wrld = getMap()
71 #regiondata<-wrld@data[,c("ADMIN","GEO3", "Stern")] 52 #regiondata<-wrld@data[,c("ADMIN","GEO3", "Stern")]
72 #df<-merge(df,regiondata,by.x="Country",by.y="ADMIN",all.x=T) 53 #df<-merge(df,regiondata,by.x="Country",by.y="ADMIN",all.x=T)
73 54
74 #cluster_labels_df = read.csv('data/clusters_top3_labels.csv') 55 #cluster_labels_df = read.csv('data/clusters_top3_labels.csv')
75 cluster_labels_df = read.csv('data/clusters_top3_countries.csv') 56 cluster_labels_df = read.csv('../data/results/clusters_top3_countries.csv')
76 cluster_labels = paste(cluster_labels_df[,1],cluster_labels_df[,2],cluster_labels_df[,3],sep="") 57 cluster_labels = paste(cluster_labels_df[,1],cluster_labels_df[,2],cluster_labels_df[,3],sep="")
77 #df$CountryLang = as.factor(paste(df$Country, df$Language, sep="-")) 58 #df$CountryLang = as.factor(paste(df$Country, df$Language, sep="-"))
78 59
79 countrycounts = table(df$Clusters,df$Country) 60 countrycounts = table(df$Clusters,df$Country)
80 library(cluster) 61 library(cluster)
145 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position=c(.9,.8),legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=10),legend.text = element_text(size=10)) 126 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position=c(.9,.8),legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=10),legend.text = element_text(size=10))
146 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="left",legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=9),legend.text = element_text(size=9)) 127 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="left",legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=9),legend.text = element_text(size=9))
147 g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="top",legend.title = element_text(size=9),legend.text = element_text(size=9)) 128 g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="top",legend.title = element_text(size=9),legend.text = element_text(size=9))
148 g = g+theme(panel.border = element_rect(colour = "white"),strip.background=element_rect(fill="white"),strip.text.x = element_blank()) 129 g = g+theme(panel.border = element_rect(colour = "white"),strip.background=element_rect(fill="white"),strip.text.x = element_blank())
149 #g = g+theme(axis.text.y = element_text(colour = ddata$labels$col)) 130 #g = g+theme(axis.text.y = element_text(colour = ddata$labels$col))
150 ggsave('data/clusters_top3.pdf',plot=g) 131 ggsave('../data/results/clusters_top3.pdf',plot=g)
151 ggsave('data/clusters_top3.eps',plot=g) 132 ggsave('../data/results/clusters_top3.eps',plot=g)
152
153 #g_legend<-function(a.gplot){
154 # tmp <- ggplot_gtable(ggplot_build(a.gplot))
155 # leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
156 # legend <- tmp$grobs[[leg]]
157 # return(legend)}
158 #mylegend<-g_legend(g)
159
160 #pdf(file="data/clusters_top3_hclust.pdf", width=12, height=5)
161 #grid.arrange(arrangeGrob(g + theme(legend.position="none"),p + theme(legend.position="none"),nrow=1, widths=c(4,1)),mylegend, nrow=2,heights=c(10, 1))
162 #dev.off()
163
164 #grid.arrange(arrangeGrob(g,p,nrow=1, ncol=2))
165 #ggsave('data/clusters_top3_hclust.pdf',plot=g_comb)
166 #g=g+annotate(x=20, y=1:18, label=cluster_idx)+geom_text(aes(x=20,y=1:18,label=cluster_idx))
167 #+guides(fill = guide_legend(title = "Region"))
168 #grid.draw(cbind(ggplotGrob(g), ggplotGrob(pp), size = "last"))