Mercurial > hg > plosone_underreview
comparison tests/test_load_features.py @ 43:b1d9ba5f888e branch-tests
debugging tests
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 15 Sep 2017 16:17:55 +0100 |
parents | c4428589b82b |
children | 3ed4c6af5a93 |
comparison
equal
deleted
inserted
replaced
41:57f53b0d1eaa | 43:b1d9ba5f888e |
---|---|
12 import pandas as pd | 12 import pandas as pd |
13 import scripts.load_features as load_features | 13 import scripts.load_features as load_features |
14 | 14 |
15 feat_loader = load_features.FeatureLoader(win2sec=8) | 15 feat_loader = load_features.FeatureLoader(win2sec=8) |
16 | 16 |
17 #TEST_METADATA_FILE = '../data/sample_dataset/metadata.csv' | |
18 TEST_METADATA_FILE = os.path.join(os.path.dirname(__file__), os.path.pardir, | |
19 'data', 'sample_dataset', 'metadata.csv') | |
20 #TEST_METADATA_FILE = 'data/sample_dataset/metadata.csv' | |
21 #TEST_MELODIA_FILE = 'data/sample_dataset/Melodia/mel_1_2_1.csv' | |
22 TEST_MELODIA_FILE = os.path.join(os.path.dirname(__file__), os.path.pardir, | |
23 'data', 'sample_dataset', 'Melodia', 'mel_1_2_1.csv') | |
17 | 24 |
18 def test_get_music_idx_from_bounds(): | 25 def test_get_music_idx_from_bounds(): |
19 bounds = np.array([['0', '10.5', 'm']]) | 26 bounds = np.array([['0', '10.5', 'm']]) |
20 sr = feat_loader.framessr2 | 27 sr = feat_loader.framessr2 |
21 music_bounds = feat_loader.get_music_idx_from_bounds(bounds, sr=sr) | 28 music_bounds = feat_loader.get_music_idx_from_bounds(bounds, sr=sr) |
211 pbihist = feat_loader.get_pb_for_file('') | 218 pbihist = feat_loader.get_pb_for_file('') |
212 assert np.array_equal(pbihist, []) | 219 assert np.array_equal(pbihist, []) |
213 | 220 |
214 | 221 |
215 def test_get_pb_for_file_n_bins(): | 222 def test_get_pb_for_file_n_bins(): |
216 pbihist = feat_loader.get_pb_for_file('data/sample_dataset/Melodia/mel_1_2_1.csv', nmfpb=False, scale=False) | 223 pbihist = feat_loader.get_pb_for_file(TEST_MELODIA_FILE, nmfpb=False, scale=False) |
217 assert pbihist.shape[1] == 3600 | 224 assert pbihist.shape[1] == 3600 |
218 | 225 |
219 | 226 |
220 def test_get_pb_for_file_align(): | 227 def test_get_pb_for_file_align(): |
221 pbihist = feat_loader.get_pb_for_file('data/sample_dataset/Melodia/mel_1_2_1.csv', nmfpb=False, scale=False) | 228 pbihist = feat_loader.get_pb_for_file(TEST_MELODIA_FILE, nmfpb=False, scale=False) |
222 pbihist = pbihist.get_values() | 229 pbihist = pbihist.get_values() |
223 assert np.sum(pbihist[:, :60].ravel()) > np.sum(pbihist[:, 60:120].ravel()) | 230 assert np.sum(pbihist[:, :60].ravel()) > np.sum(pbihist[:, 60:120].ravel()) |
224 | 231 |
225 | 232 |
226 def test_get_pb_for_file_nmf(): | 233 def test_get_pb_for_file_nmf(): |
227 pbihist = feat_loader.get_pb_for_file('data/sample_dataset/Melodia/mel_1_2_1.csv', nmfpb=True, scale=False) | 234 pbihist = feat_loader.get_pb_for_file(TEST_MELODIA_FILE, nmfpb=True, scale=False) |
228 assert pbihist.shape[1] == 240 | 235 assert pbihist.shape[1] == 240 |
229 | 236 |
230 | 237 |
231 def test_get_features(): | 238 def test_get_features(): |
232 df = pd.read_csv('data/sample_dataset/metadata.csv') | 239 df = pd.read_csv(TEST_METADATA_FILE) |
233 df = df.iloc[:1, :] | 240 df = df.iloc[:1, :] |
234 os.chdir('data/') | 241 os.chdir('data/') |
235 data_list = feat_loader.get_features(df) | 242 print df.head() |
243 print os.getcwd() | |
244 ddf = pd.read_csv(df['Melodia'].iloc[0]) | |
245 print ddf.head() | |
246 data_list = feat_loader.get_features(df, precomp_melody=False) | |
236 os.chdir('..') | 247 os.chdir('..') |
237 assert len(np.unique(data_list[-1])) == 1 | 248 assert len(np.unique(data_list[-1])) == 1 |
238 | 249 |
239 | 250 |
240 def test_get_features_n_files(): | 251 def test_get_features_n_files(): |
241 df = pd.read_csv('data/sample_dataset/metadata.csv') | 252 df = pd.read_csv(TEST_METADATA_FILE) |
242 n_files = 3 | 253 n_files = 3 |
243 df = df.iloc[:n_files, :] | 254 df = df.iloc[:n_files, :] |
244 os.chdir('data/') | 255 os.chdir('data/') |
245 data_list = feat_loader.get_features(df) | 256 data_list = feat_loader.get_features(df, precomp_melody=False) |
246 os.chdir('..') | 257 os.chdir('..') |
247 assert len(np.unique(data_list[-1])) == n_files | 258 assert len(np.unique(data_list[-1])) == n_files |
248 | 259 |
249 | 260 |
250 def test_get_features_n_frames(): | 261 def test_get_features_n_frames(): |
251 df = pd.read_csv('data/sample_dataset/metadata.csv') | 262 df = pd.read_csv(TEST_METADATA_FILE) |
252 df = df.iloc[:1, :] | 263 df = df.iloc[:1, :] |
253 os.chdir('data/') | 264 os.chdir('data/') |
254 data_list = feat_loader.get_features(df) | 265 data_list = feat_loader.get_features(df, precomp_melody=False) |
255 os.chdir('..') | 266 os.chdir('..') |
256 dur_sec = 11.5 # duration of first file in metadata.csv is > 11 seconds | 267 dur_sec = 11.5 # duration of first file in metadata.csv is > 11 seconds |
257 n_frames_true = np.round((dur_sec - feat_loader.win2sec) * feat_loader.framessr2) | 268 n_frames_true = np.round((dur_sec - feat_loader.win2sec) * feat_loader.framessr2) |
258 assert len(data_list[0]) == n_frames_true | 269 assert len(data_list[0]) == n_frames_true |
259 | 270 |