Mercurial > hg > plosone_underreview
comparison tests/test_outliers.py @ 20:65b9330afdd8 branch-tests
return train/test sets in load_dataset
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Wed, 13 Sep 2017 12:53:57 +0100 |
parents | ed109218dd4b |
children | e8084526f7e5 |
comparison
equal
deleted
inserted
replaced
19:0bba6f63f4fd | 20:65b9330afdd8 |
---|---|
7 | 7 |
8 import pytest | 8 import pytest |
9 | 9 |
10 import numpy as np | 10 import numpy as np |
11 import pandas as pd | 11 import pandas as pd |
12 import pickle | |
13 import os | |
12 | 14 |
13 import scripts.outliers as outliers | 15 import scripts.outliers as outliers |
14 | 16 |
15 | 17 |
16 def test_country_outlier_df(): | 18 def test_country_outlier_df(): |
27 outlier_counts_true = {'a':.5, 'b':1.} | 29 outlier_counts_true = {'a':.5, 'b':1.} |
28 assert np.array_equal(outlier_counts, outlier_counts_true) | 30 assert np.array_equal(outlier_counts, outlier_counts_true) |
29 | 31 |
30 | 32 |
31 def test_get_outliers_df(): | 33 def test_get_outliers_df(): |
32 assert True | 34 np.random.seed(1) |
35 X = np.random.randn(100, 3) | |
36 # create outliers by shifting the entries of the last 5 samples | |
37 X[-5:, :] = X[-5:, :] + 10 | |
38 Y = np.concatenate([np.repeat('a', 95), np.repeat('b', 5)]) | |
39 df, threshold, MD = outliers.get_outliers_df(X, Y) | |
40 # expect that items from country 'b' are detected as outliers | |
41 assert np.array_equal(df['Outliers'].get_values(), np.array([0., 1.0])) | |
42 |