Mercurial > hg > plosone_underreview
comparison notebooks/sensitivity_experiment.ipynb @ 59:444041185ba9 branch-tests
changes in sensitivity experiment
author | mpanteli <m.x.panteli@gmail.com> |
---|---|
date | Thu, 21 Sep 2017 15:23:05 +0100 |
parents | 98cd5317e504 |
children | 402f43d5b7ad |
comparison
equal
deleted
inserted
replaced
55:98cd5317e504 | 59:444041185ba9 |
---|---|
1 { | 1 { |
2 "cells": [ | 2 "cells": [ |
3 { | 3 { |
4 "cell_type": "code", | 4 "cell_type": "code", |
5 "execution_count": 1, | 5 "execution_count": 20, |
6 "metadata": {}, | 6 "metadata": {}, |
7 "outputs": [ | 7 "outputs": [ |
8 { | 8 { |
9 "name": "stderr", | 9 "name": "stdout", |
10 "output_type": "stream", | 10 "output_type": "stream", |
11 "text": [ | 11 "text": [ |
12 "/homes/mp305/anaconda/lib/python2.7/site-packages/librosa/core/audio.py:33: UserWarning: Could not import scikits.samplerate. Falling back to scipy.signal\n", | 12 "The autoreload extension is already loaded. To reload it, use:\n", |
13 " warnings.warn('Could not import scikits.samplerate. '\n" | 13 " %reload_ext autoreload\n" |
14 ] | 14 ] |
15 } | 15 } |
16 ], | 16 ], |
17 "source": [ | 17 "source": [ |
18 "import numpy as np\n", | 18 "import numpy as np\n", |
4545 ] | 4545 ] |
4546 }, | 4546 }, |
4547 { | 4547 { |
4548 "cell_type": "code", | 4548 "cell_type": "code", |
4549 "execution_count": null, | 4549 "execution_count": null, |
4550 "metadata": {}, | 4550 "metadata": { |
4551 "collapsed": true | |
4552 }, | |
4551 "outputs": [], | 4553 "outputs": [], |
4552 "source": [ | 4554 "source": [ |
4553 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES\n", | 4555 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES\n", |
4554 "for n in range(n_iters):\n", | 4556 "for n in range(n_iters):\n", |
4555 " print \"iteration %d\" % n\n", | 4557 " print \"iteration %d\" % n\n", |
4570 "## Classification only - assuming mapper files are exported " | 4572 "## Classification only - assuming mapper files are exported " |
4571 ] | 4573 ] |
4572 }, | 4574 }, |
4573 { | 4575 { |
4574 "cell_type": "code", | 4576 "cell_type": "code", |
4575 "execution_count": 19, | 4577 "execution_count": 21, |
4576 "metadata": {}, | 4578 "metadata": {}, |
4577 "outputs": [ | 4579 "outputs": [ |
4578 { | 4580 { |
4579 "name": "stdout", | 4581 "name": "stdout", |
4580 "output_type": "stream", | 4582 "output_type": "stream", |
4786 "74 Czech Republic 0.024390 41 1\n", | 4788 "74 Czech Republic 0.024390 41 1\n", |
4787 "13 Germany 0.040000 100 4\n", | 4789 "13 Germany 0.040000 100 4\n", |
4788 "31 Afghanistan 0.041667 24 1\n", | 4790 "31 Afghanistan 0.041667 24 1\n", |
4789 "105 Sudan 0.045455 66 3\n", | 4791 "105 Sudan 0.045455 66 3\n", |
4790 "120 Kazakhstan 0.045455 88 4\n", | 4792 "120 Kazakhstan 0.045455 88 4\n", |
4793 "writing file\n", | |
4794 "iteration 7\n" | |
4795 ] | |
4796 }, | |
4797 { | |
4798 "name": "stdout", | |
4799 "output_type": "stream", | |
4800 "text": [ | |
4801 "classifying...\n", | |
4802 "/import/c4dm-04/mariap/train_data_melodia_8_7.pickle\n", | |
4803 "0.179777654473\n", | |
4804 "detecting outliers...\n", | |
4805 "most outliers \n", | |
4806 " Country Outliers N_Country N_Outliers\n", | |
4807 "136 Botswana 0.636364 88 56\n", | |
4808 "95 Chad 0.636364 11 7\n", | |
4809 "86 Gambia 0.511111 45 23\n", | |
4810 "42 Benin 0.500000 26 13\n", | |
4811 "14 Liberia 0.500000 40 20\n", | |
4812 "63 Mozambique 0.500000 34 17\n", | |
4813 "78 El Salvador 0.424242 33 14\n", | |
4814 "62 Senegal 0.416667 36 15\n", | |
4815 "20 Pakistan 0.415730 89 37\n", | |
4816 "106 Nepal 0.402174 92 37\n", | |
4817 "least outliers \n", | |
4818 " Country Outliers N_Country N_Outliers\n", | |
4819 "1 Lithuania 0.000000 47 0\n", | |
4820 "119 Denmark 0.000000 16 0\n", | |
4821 "113 Iceland 0.000000 14 0\n", | |
4822 "27 South Korea 0.000000 11 0\n", | |
4823 "15 Netherlands 0.015152 66 1\n", | |
4824 "120 Kazakhstan 0.034884 86 3\n", | |
4825 "30 Afghanistan 0.041667 24 1\n", | |
4826 "102 Nicaragua 0.050000 20 1\n", | |
4827 "112 Israel 0.050000 100 5\n", | |
4828 "28 Tajikistan 0.052632 19 1\n", | |
4829 "writing file\n", | |
4830 "iteration 8\n", | |
4831 "classifying...\n", | |
4832 "/import/c4dm-04/mariap/train_data_melodia_8_8.pickle\n", | |
4833 "0.165005035342\n", | |
4834 "detecting outliers...\n", | |
4835 "most outliers \n", | |
4836 " Country Outliers N_Country N_Outliers\n", | |
4837 "95 Chad 0.636364 11 7\n", | |
4838 "43 Benin 0.576923 26 15\n", | |
4839 "136 Botswana 0.571429 77 44\n", | |
4840 "14 Liberia 0.525000 40 21\n", | |
4841 "86 Gambia 0.488889 45 22\n", | |
4842 "78 El Salvador 0.484848 33 16\n", | |
4843 "64 Mozambique 0.470588 34 16\n", | |
4844 "62 Fiji 0.466667 15 7\n", | |
4845 "20 Pakistan 0.436782 87 38\n", | |
4846 "63 Senegal 0.416667 36 15\n", | |
4847 "least outliers \n", | |
4848 " Country Outliers N_Country N_Outliers\n", | |
4849 "1 Lithuania 0.000000 47 0\n", | |
4850 "119 Denmark 0.000000 16 0\n", | |
4851 "113 Iceland 0.000000 14 0\n", | |
4852 "27 South Korea 0.000000 11 0\n", | |
4853 "102 Nicaragua 0.000000 20 0\n", | |
4854 "28 Tajikistan 0.000000 19 0\n", | |
4855 "15 Netherlands 0.015152 66 1\n", | |
4856 "89 Croatia 0.032258 31 1\n", | |
4857 "120 Kazakhstan 0.034884 86 3\n", | |
4858 "30 Afghanistan 0.041667 24 1\n", | |
4859 "writing file\n", | |
4860 "iteration 9\n", | |
4861 "classifying...\n", | |
4862 "/import/c4dm-04/mariap/train_data_melodia_8_9.pickle\n", | |
4863 "0.168630986212\n", | |
4864 "detecting outliers...\n", | |
4865 "most outliers \n", | |
4866 " Country Outliers N_Country N_Outliers\n", | |
4867 "43 Benin 0.576923 26 15\n", | |
4868 "136 Botswana 0.567901 81 46\n", | |
4869 "60 Chad 0.545455 11 6\n", | |
4870 "86 Gambia 0.533333 45 24\n", | |
4871 "14 Liberia 0.525000 40 21\n", | |
4872 "65 Uganda 0.482759 87 42\n", | |
4873 "64 Mozambique 0.470588 34 16\n", | |
4874 "20 Pakistan 0.465909 88 41\n", | |
4875 "135 French Guiana 0.464286 28 13\n", | |
4876 "67 Brazil 0.460000 100 46\n", | |
4877 "least outliers \n", | |
4878 " Country Outliers N_Country N_Outliers\n", | |
4879 "1 Lithuania 0.000000 47 0\n", | |
4880 "90 French Polynesia 0.000000 15 0\n", | |
4881 "102 Nicaragua 0.000000 20 0\n", | |
4882 "113 Iceland 0.000000 14 0\n", | |
4883 "119 Denmark 0.000000 16 0\n", | |
4884 "15 Netherlands 0.015152 66 1\n", | |
4885 "18 New Zealand 0.029412 34 1\n", | |
4886 "120 Kazakhstan 0.034884 86 3\n", | |
4887 "31 Czech Republic 0.048780 41 2\n", | |
4888 "28 Tajikistan 0.052632 19 1\n", | |
4791 "writing file\n" | 4889 "writing file\n" |
4792 ] | 4890 ] |
4793 } | 4891 } |
4794 ], | 4892 ], |
4795 "source": [ | 4893 "source": [ |
4796 "n_iters = 7\n", | 4894 "n_iters = 10\n", |
4797 "OUTPUT_FILES = load_dataset.OUTPUT_FILES\n", | 4895 "OUTPUT_FILES = load_dataset.OUTPUT_FILES\n", |
4798 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES\n", | 4896 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES\n", |
4799 "for n in range(n_iters):\n", | 4897 "for n in range(n_iters):\n", |
4800 " print \"iteration %d\" % n\n", | 4898 " print \"iteration %d\" % n\n", |
4801 " CLASS_INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", | 4899 " CLASS_INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", |
4838 "<br> Sort by outlier percentage in descending order." | 4936 "<br> Sort by outlier percentage in descending order." |
4839 ] | 4937 ] |
4840 }, | 4938 }, |
4841 { | 4939 { |
4842 "cell_type": "code", | 4940 "cell_type": "code", |
4843 "execution_count": null, | 4941 "execution_count": 45, |
4844 "metadata": { | 4942 "metadata": {}, |
4845 "collapsed": true | |
4846 }, | |
4847 "outputs": [], | 4943 "outputs": [], |
4848 "source": [ | 4944 "source": [ |
4849 "ranked_countries = pd.DataFrame()\n", | 4945 "ranked_countries = pd.DataFrame()\n", |
4850 "ranked_outliers = pd.DataFrame()\n", | 4946 "ranked_outliers = pd.DataFrame()\n", |
4851 "for n in range(n_iters):\n", | 4947 "for n in range(n_iters):\n", |
4852 " df_global = pd.read_csv('../data/outliers_'+str(n)+'.csv')\n", | 4948 " df_global = pd.read_csv('../data/outliers_'+str(n)+'.csv')\n", |
4853 " df_global = df_global.sort_values('Outliers', axis=0, ascending=False, inplace=True)\n", | 4949 " df_global = df_global.sort_values('Outliers', axis=0, ascending=False).reset_index()\n", |
4854 " ranked_countries = pd.concat([ranked_countries, df_global['Country']], axis=1)\n", | 4950 " ranked_countries = pd.concat([ranked_countries, df_global['Country']], axis=1)\n", |
4855 " ranked_outliers = pd.concat([ranked_outliers, df_global['Outliers']], axis=1)" | 4951 " ranked_outliers = pd.concat([ranked_outliers, df_global['Outliers']], axis=1)" |
4952 ] | |
4953 }, | |
4954 { | |
4955 "cell_type": "code", | |
4956 "execution_count": 49, | |
4957 "metadata": {}, | |
4958 "outputs": [ | |
4959 { | |
4960 "data": { | |
4961 "text/plain": [ | |
4962 "(133, 10)" | |
4963 ] | |
4964 }, | |
4965 "execution_count": 49, | |
4966 "metadata": {}, | |
4967 "output_type": "execute_result" | |
4968 } | |
4969 ], | |
4970 "source": [ | |
4971 "ranked_outliers.shape" | |
4856 ] | 4972 ] |
4857 }, | 4973 }, |
4858 { | 4974 { |
4859 "cell_type": "markdown", | 4975 "cell_type": "markdown", |
4860 "metadata": {}, | 4976 "metadata": {}, |
4862 "Remove countries with 0% outliers as these are in random (probably alphabetical) order." | 4978 "Remove countries with 0% outliers as these are in random (probably alphabetical) order." |
4863 ] | 4979 ] |
4864 }, | 4980 }, |
4865 { | 4981 { |
4866 "cell_type": "code", | 4982 "cell_type": "code", |
4867 "execution_count": null, | 4983 "execution_count": 48, |
4868 "metadata": { | 4984 "metadata": {}, |
4869 "collapsed": true | 4985 "outputs": [ |
4870 }, | 4986 { |
4871 "outputs": [], | 4987 "name": "stdout", |
4988 "output_type": "stream", | |
4989 "text": [ | |
4990 " Country Country Country Country Country Country \\\n", | |
4991 "0 Botswana Chad Botswana Botswana Chad Botswana \n", | |
4992 "1 Ivory Coast Fiji Gambia Ivory Coast Botswana Ivory Coast \n", | |
4993 "2 Gambia Gambia Ivory Coast Gambia Ivory Coast Pakistan \n", | |
4994 "3 Benin Benin Fiji Benin Fiji Chad \n", | |
4995 "4 Fiji Pakistan Benin Fiji Gambia Fiji \n", | |
4996 "\n", | |
4997 " Country Country Country Country \n", | |
4998 "0 Botswana Botswana Chad Benin \n", | |
4999 "1 Ivory Coast Chad Benin Botswana \n", | |
5000 "2 Gambia Gambia Botswana Chad \n", | |
5001 "3 Pakistan Mozambique Liberia Gambia \n", | |
5002 "4 Fiji Benin Gambia Liberia \n", | |
5003 " Outliers Outliers Outliers Outliers Outliers Outliers Outliers \\\n", | |
5004 "0 0.590909 0.545455 0.615385 0.617284 0.727273 0.607143 0.574468 \n", | |
5005 "1 0.571429 0.533333 0.520833 0.571429 0.630952 0.571429 0.571429 \n", | |
5006 "2 0.541667 0.520833 0.500000 0.541667 0.571429 0.553191 0.520833 \n", | |
5007 "3 0.538462 0.500000 0.466667 0.538462 0.533333 0.545455 0.516854 \n", | |
5008 "4 0.466667 0.500000 0.461538 0.533333 0.520833 0.533333 0.466667 \n", | |
5009 "\n", | |
5010 " Outliers Outliers Outliers \n", | |
5011 "0 0.636364 0.636364 0.576923 \n", | |
5012 "1 0.636364 0.576923 0.567901 \n", | |
5013 "2 0.511111 0.571429 0.545455 \n", | |
5014 "3 0.500000 0.525000 0.533333 \n", | |
5015 "4 0.500000 0.488889 0.525000 \n" | |
5016 ] | |
5017 } | |
5018 ], | |
4872 "source": [ | 5019 "source": [ |
4873 "zero_idx = np.where(np.sum(ranked_outliers, axis=1)==0)[0]\n", | 5020 "zero_idx = np.where(np.sum(ranked_outliers, axis=1)==0)[0]\n", |
4874 "first_zero_idx = np.min(zero_idx)\n", | 5021 "first_zero_idx = np.min(zero_idx)\n", |
4875 "ranked_countries = ranked_countries.iloc[:first_zero_idx, :]\n", | 5022 "ranked_countries = ranked_countries.iloc[:first_zero_idx, :]\n", |
4876 "ranked_outliers = ranked_outliers.iloc[:first_zero_idx, :]\n", | 5023 "ranked_outliers = ranked_outliers.iloc[:first_zero_idx, :]\n", |
4886 "And now kendalltau correlation" | 5033 "And now kendalltau correlation" |
4887 ] | 5034 ] |
4888 }, | 5035 }, |
4889 { | 5036 { |
4890 "cell_type": "code", | 5037 "cell_type": "code", |
4891 "execution_count": 33, | 5038 "execution_count": 54, |
4892 "metadata": {}, | 5039 "metadata": {}, |
4893 "outputs": [ | 5040 "outputs": [ |
4894 { | 5041 { |
4895 "name": "stdout", | 5042 "name": "stdout", |
4896 "output_type": "stream", | 5043 "output_type": "stream", |
4897 "text": [ | 5044 "text": [ |
4898 "KendalltauResult(correlation=0.99999999999999989, pvalue=2.5428927239036995e-67)\n" | 5045 "KendalltauResult(correlation=0.11870585554796083, pvalue=0.042684955693776824)\n", |
5046 "KendalltauResult(correlation=0.061289587605377081, pvalue=0.29535042403787393)\n", | |
5047 "KendalltauResult(correlation=0.14057871952608797, pvalue=0.016384498702657929)\n", | |
5048 "KendalltauResult(correlation=0.043062200956937809, pvalue=0.46219181347134564)\n", | |
5049 "KendalltauResult(correlation=0.038049669628617007, pvalue=0.51591269004232343)\n", | |
5050 "KendalltauResult(correlation=0.15516062884483939, pvalue=0.0080680863973824919)\n", | |
5051 "KendalltauResult(correlation=0.097972203235361141, pvalue=0.094371801845320874)\n", | |
5052 "KendalltauResult(correlation=0.070403280929596718, pvalue=0.22933906132681292)\n", | |
5053 "KendalltauResult(correlation=0.087263613579403057, pvalue=0.13624109595088119)\n", | |
5054 "KendalltauResult(correlation=0.026657552973342449, pvalue=0.64900123852931668)\n", | |
5055 "KendalltauResult(correlation=0.012531328320802006, pvalue=0.83057867073317604)\n", | |
5056 "KendalltauResult(correlation=0.15698336750968331, pvalue=0.0073549938316186895)\n", | |
5057 "KendalltauResult(correlation=0.072226019594440652, pvalue=0.21750692637496993)\n", | |
5058 "KendalltauResult(correlation=0.064479380268853956, pvalue=0.27093205134080134)\n", | |
5059 "KendalltauResult(correlation=0.07518796992481204, pvalue=0.19922707586147026)\n", | |
5060 "KendalltauResult(correlation=0.017088174982911826, pvalue=0.77046791234681555)\n", | |
5061 "KendalltauResult(correlation=0.098200045568466648, pvalue=0.093608177106345392)\n", | |
5062 "KendalltauResult(correlation=0.11004784688995217, pvalue=0.060250899787989511)\n", | |
5063 "KendalltauResult(correlation=0.051720209614946465, pvalue=0.37719896672100306)\n", | |
5064 "KendalltauResult(correlation=0.099567099567099596, pvalue=0.089129953079656793)\n", | |
5065 "KendalltauResult(correlation=-0.081795397584871282, pvalue=0.16254238954046385)\n", | |
5066 "KendalltauResult(correlation=0.089769879243563472, pvalue=0.12534294310051713)\n", | |
5067 "KendalltauResult(correlation=0.10047846889952156, pvalue=0.086241531926005505)\n", | |
5068 "KendalltauResult(correlation=0.014809751651856917, pvalue=0.80037548797424396)\n", | |
5069 "KendalltauResult(correlation=0.021189336978810668, pvalue=0.71751195692767422)\n", | |
5070 "KendalltauResult(correlation=0.020733652312599684, pvalue=0.7233346465763022)\n", | |
5071 "KendalltauResult(correlation=-0.057644110275689227, pvalue=0.32501053989276085)\n", | |
5072 "KendalltauResult(correlation=0.04647983595352017, pvalue=0.42743119135699703)\n", | |
5073 "KendalltauResult(correlation=-0.02939166097060834, pvalue=0.6157855679677966)\n", | |
5074 "KendalltauResult(correlation=-0.01754385964912281, pvalue=0.76452558103925983)\n", | |
5075 "KendalltauResult(correlation=-0.00022784233310549102, pvalue=0.99689609964041026)\n", | |
5076 "KendalltauResult(correlation=0.053087263613579412, pvalue=0.36471883993264553)\n", | |
5077 "KendalltauResult(correlation=0.11027568922305765, pvalue=0.059721613251292195)\n", | |
5078 "KendalltauResult(correlation=0.1319207108680793, pvalue=0.024296399889465414)\n", | |
5079 "KendalltauResult(correlation=0.11050353155616316, pvalue=0.059196189350124301)\n", | |
5080 "KendalltauResult(correlation=0.081339712918660295, pvalue=0.16489618845189757)\n", | |
5081 "KendalltauResult(correlation=0.091136933242196419, pvalue=0.11969173188443738)\n", | |
5082 "KendalltauResult(correlation=0.010252904989747097, pvalue=0.86103426355600943)\n", | |
5083 "KendalltauResult(correlation=0.026201868307131469, pvalue=0.6546080905364744)\n", | |
5084 "KendalltauResult(correlation=0.056049213943950793, pvalue=0.33857618122131272)\n", | |
5085 "KendalltauResult(correlation=0.075415812257917533, pvalue=0.19786889281527764)\n", | |
5086 "KendalltauResult(correlation=0.026657552973342449, pvalue=0.64900123852931668)\n", | |
5087 "KendalltauResult(correlation=0.091136933242196419, pvalue=0.11969173188443738)\n", | |
5088 "KendalltauResult(correlation=0.1964000911369333, pvalue=0.00079845943724486494)\n", | |
5089 "KendalltauResult(correlation=0.049441786283891551, pvalue=0.39857590952666144)\n" | |
4899 ] | 5090 ] |
4900 } | 5091 } |
4901 ], | 5092 ], |
4902 "source": [ | 5093 "source": [ |
4903 "from scipy.stats import kendalltau\n", | 5094 "from scipy.stats import kendalltau\n", |
4904 "for i in range(len(ranked_countries)-1):\n", | 5095 "for i in range(n_iters-1):\n", |
4905 " for j in range(i+1, len(ranked_countries)):\n", | 5096 " for j in range(i+1, n_iters):\n", |
4906 " print kendalltau(ranked_countries.iloc[:, i], ranked_countries.iloc[:, j])" | 5097 " print kendalltau(ranked_countries.iloc[:, i], ranked_countries.iloc[:, j])" |
4907 ] | 5098 ] |
4908 }, | 5099 }, |
4909 { | 5100 { |
4910 "cell_type": "code", | 5101 "cell_type": "code", |
4911 "execution_count": 34, | 5102 "execution_count": 53, |
4912 "metadata": {}, | 5103 "metadata": {}, |
4913 "outputs": [ | 5104 "outputs": [ |
4914 { | 5105 { |
4915 "data": { | 5106 "data": { |
4916 "text/plain": [ | 5107 "text/plain": [ |
4917 "SpearmanrResult(correlation=1.0, pvalue=0.0)" | 5108 "133" |
4918 ] | 5109 ] |
4919 }, | 5110 }, |
4920 "execution_count": 34, | 5111 "execution_count": 53, |
4921 "metadata": {}, | 5112 "metadata": {}, |
4922 "output_type": "execute_result" | 5113 "output_type": "execute_result" |
4923 } | 5114 } |
4924 ], | 5115 ], |
4925 "source": [ | 5116 "source": [ |
5117 "len(ranked_countries)" | |
5118 ] | |
5119 }, | |
5120 { | |
5121 "cell_type": "code", | |
5122 "execution_count": 56, | |
5123 "metadata": {}, | |
5124 "outputs": [], | |
5125 "source": [ | |
4926 "from scipy.stats import spearmanr\n", | 5126 "from scipy.stats import spearmanr\n", |
4927 "spearmanr(ranked_countries)" | 5127 "r, p = spearmanr(ranked_countries)" |
5128 ] | |
5129 }, | |
5130 { | |
5131 "cell_type": "code", | |
5132 "execution_count": 58, | |
5133 "metadata": {}, | |
5134 "outputs": [ | |
5135 { | |
5136 "data": { | |
5137 "text/plain": [ | |
5138 "array([[ 1.00000000e+00, 1.74432009e-01, 8.97001663e-02,\n", | |
5139 " 1.99727609e-01, 6.82200753e-02, 5.39272197e-02,\n", | |
5140 " 2.21325022e-01, 1.33629528e-01, 1.08109487e-01,\n", | |
5141 " 1.31114761e-01],\n", | |
5142 " [ 1.74432009e-01, 1.00000000e+00, 4.20573142e-02,\n", | |
5143 " 2.07251507e-02, 2.28481652e-01, 1.01916936e-01,\n", | |
5144 " 1.01442548e-01, 1.12532008e-01, 1.89806266e-02,\n", | |
5145 " 1.48213138e-01],\n", | |
5146 " [ 8.97001663e-02, 4.20573142e-02, 1.00000000e+00,\n", | |
5147 " 1.53308985e-01, 7.91412044e-02, 1.41734934e-01,\n", | |
5148 " -1.14419359e-01, 1.23519450e-01, 1.50641189e-01,\n", | |
5149 " 3.17074913e-02],\n", | |
5150 " [ 1.99727609e-01, 2.07251507e-02, 1.53308985e-01,\n", | |
5151 " 1.00000000e+00, 3.04934657e-02, 3.27786903e-02,\n", | |
5152 " -7.58255884e-02, 6.98727824e-02, -4.16900460e-02,\n", | |
5153 " -2.15208986e-02],\n", | |
5154 " [ 6.82200753e-02, 2.28481652e-01, 7.91412044e-02,\n", | |
5155 " 3.04934657e-02, 1.00000000e+00, -8.00848798e-04,\n", | |
5156 " 8.02532110e-02, 1.65796105e-01, 1.91678314e-01,\n", | |
5157 " 1.62863060e-01],\n", | |
5158 " [ 5.39272197e-02, 1.01916936e-01, 1.41734934e-01,\n", | |
5159 " 3.27786903e-02, -8.00848798e-04, 1.00000000e+00,\n", | |
5160 " 1.17969619e-01, 1.31221881e-01, 2.06996460e-02,\n", | |
5161 " 3.92160863e-02],\n", | |
5162 " [ 2.21325022e-01, 1.01442548e-01, -1.14419359e-01,\n", | |
5163 " -7.58255884e-02, 8.02532110e-02, 1.17969619e-01,\n", | |
5164 " 1.00000000e+00, 8.75832730e-02, 1.10578345e-01,\n", | |
5165 " 4.28326583e-02],\n", | |
5166 " [ 1.33629528e-01, 1.12532008e-01, 1.23519450e-01,\n", | |
5167 " 6.98727824e-02, 1.65796105e-01, 1.31221881e-01,\n", | |
5168 " 8.75832730e-02, 1.00000000e+00, 1.31374909e-01,\n", | |
5169 " 2.78868814e-01],\n", | |
5170 " [ 1.08109487e-01, 1.89806266e-02, 1.50641189e-01,\n", | |
5171 " -4.16900460e-02, 1.91678314e-01, 2.06996460e-02,\n", | |
5172 " 1.10578345e-01, 1.31374909e-01, 1.00000000e+00,\n", | |
5173 " 7.53103927e-02],\n", | |
5174 " [ 1.31114761e-01, 1.48213138e-01, 3.17074913e-02,\n", | |
5175 " -2.15208986e-02, 1.62863060e-01, 3.92160863e-02,\n", | |
5176 " 4.28326583e-02, 2.78868814e-01, 7.53103927e-02,\n", | |
5177 " 1.00000000e+00]])" | |
5178 ] | |
5179 }, | |
5180 "execution_count": 58, | |
5181 "metadata": {}, | |
5182 "output_type": "execute_result" | |
5183 } | |
5184 ], | |
5185 "source": [ | |
5186 "r" | |
4928 ] | 5187 ] |
4929 }, | 5188 }, |
4930 { | 5189 { |
4931 "cell_type": "code", | 5190 "cell_type": "code", |
4932 "execution_count": null, | 5191 "execution_count": null, |