Mercurial > hg > plosone_underreview
comparison notebooks/sensitivity_experiment.ipynb @ 48:08b9327f1935 branch-tests
mapper now writes output
author | mpanteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 15 Sep 2017 17:46:45 +0100 |
parents | 081ff4ea7da7 |
children | d3de9ac0d545 |
comparison
equal
deleted
inserted
replaced
47:081ff4ea7da7 | 48:08b9327f1935 |
---|---|
1 { | 1 { |
2 "cells": [ | 2 "cells": [ |
3 { | 3 { |
4 "cell_type": "code", | 4 "cell_type": "code", |
5 "execution_count": 15, | 5 "execution_count": 1, |
6 "metadata": { | 6 "metadata": {}, |
7 "collapsed": false | |
8 }, | |
9 "outputs": [ | 7 "outputs": [ |
10 { | 8 { |
11 "name": "stdout", | 9 "name": "stderr", |
12 "output_type": "stream", | 10 "output_type": "stream", |
13 "text": [ | 11 "text": [ |
14 "The autoreload extension is already loaded. To reload it, use:\n", | 12 "/homes/mp305/anaconda/lib/python2.7/site-packages/librosa/core/audio.py:33: UserWarning: Could not import scikits.samplerate. Falling back to scipy.signal\n", |
15 " %reload_ext autoreload\n" | 13 " warnings.warn('Could not import scikits.samplerate. '\n" |
16 ] | 14 ] |
17 } | 15 } |
18 ], | 16 ], |
19 "source": [ | 17 "source": [ |
20 "import numpy as np\n", | 18 "import numpy as np\n", |
34 "import scripts.outliers as outliers" | 32 "import scripts.outliers as outliers" |
35 ] | 33 ] |
36 }, | 34 }, |
37 { | 35 { |
38 "cell_type": "code", | 36 "cell_type": "code", |
39 "execution_count": 2, | 37 "execution_count": 3, |
40 "metadata": { | 38 "metadata": { |
41 "collapsed": true | 39 "collapsed": true |
42 }, | 40 }, |
43 "outputs": [], | 41 "outputs": [], |
44 "source": [ | 42 "source": [ |
47 ] | 45 ] |
48 }, | 46 }, |
49 { | 47 { |
50 "cell_type": "code", | 48 "cell_type": "code", |
51 "execution_count": 5, | 49 "execution_count": 5, |
52 "metadata": { | 50 "metadata": {}, |
53 "collapsed": false | |
54 }, | |
55 "outputs": [ | 51 "outputs": [ |
56 { | 52 { |
57 "data": { | 53 "data": { |
58 "text/plain": [ | 54 "text/plain": [ |
59 "(8396, 108)" | 55 "(8396, 108)" |
70 ] | 66 ] |
71 }, | 67 }, |
72 { | 68 { |
73 "cell_type": "code", | 69 "cell_type": "code", |
74 "execution_count": 48, | 70 "execution_count": 48, |
75 "metadata": { | 71 "metadata": {}, |
76 "collapsed": false | |
77 }, | |
78 "outputs": [ | 72 "outputs": [ |
79 { | 73 { |
80 "name": "stdout", | 74 "name": "stdout", |
81 "output_type": "stream", | 75 "output_type": "stream", |
82 "text": [ | 76 "text": [ |
282 ] | 276 ] |
283 }, | 277 }, |
284 { | 278 { |
285 "cell_type": "code", | 279 "cell_type": "code", |
286 "execution_count": 52, | 280 "execution_count": 52, |
287 "metadata": { | 281 "metadata": {}, |
288 "collapsed": false | |
289 }, | |
290 "outputs": [ | 282 "outputs": [ |
291 { | 283 { |
292 "name": "stdout", | 284 "name": "stdout", |
293 "output_type": "stream", | 285 "output_type": "stream", |
294 "text": [ | 286 "text": [ |
453 ] | 445 ] |
454 }, | 446 }, |
455 { | 447 { |
456 "cell_type": "code", | 448 "cell_type": "code", |
457 "execution_count": 56, | 449 "execution_count": 56, |
458 "metadata": { | 450 "metadata": {}, |
459 "collapsed": false | |
460 }, | |
461 "outputs": [ | 451 "outputs": [ |
462 { | 452 { |
463 "data": { | 453 "data": { |
464 "text/plain": [ | 454 "text/plain": [ |
465 "array([ 59, 1, 1, 1, 1, 733, 733, 733, 733, 733, 733, 733, 733,\n", | 455 "array([ 59, 1, 1, 1, 1, 733, 733, 733, 733, 733, 733, 733, 733,\n", |
478 ] | 468 ] |
479 }, | 469 }, |
480 { | 470 { |
481 "cell_type": "code", | 471 "cell_type": "code", |
482 "execution_count": 8, | 472 "execution_count": 8, |
483 "metadata": { | 473 "metadata": {}, |
484 "collapsed": false | |
485 }, | |
486 "outputs": [ | 474 "outputs": [ |
487 { | 475 { |
488 "data": { | 476 "data": { |
489 "text/html": [ | 477 "text/html": [ |
490 "<div>\n", | 478 "<div>\n", |
739 ] | 727 ] |
740 }, | 728 }, |
741 { | 729 { |
742 "cell_type": "code", | 730 "cell_type": "code", |
743 "execution_count": 47, | 731 "execution_count": 47, |
744 "metadata": { | 732 "metadata": {}, |
745 "collapsed": false | |
746 }, | |
747 "outputs": [ | 733 "outputs": [ |
748 { | 734 { |
749 "name": "stdout", | 735 "name": "stdout", |
750 "output_type": "stream", | 736 "output_type": "stream", |
751 "text": [ | 737 "text": [ |
840 ] | 826 ] |
841 }, | 827 }, |
842 { | 828 { |
843 "cell_type": "code", | 829 "cell_type": "code", |
844 "execution_count": 59, | 830 "execution_count": 59, |
845 "metadata": { | 831 "metadata": {}, |
846 "collapsed": false | |
847 }, | |
848 "outputs": [ | 832 "outputs": [ |
849 { | 833 { |
850 "name": "stdout", | 834 "name": "stdout", |
851 "output_type": "stream", | 835 "output_type": "stream", |
852 "text": [ | 836 "text": [ |
4550 " output_file in OUTPUT_FILES]\n", | 4534 " output_file in OUTPUT_FILES]\n", |
4551 " load_dataset.features_for_train_test_sets(df, write_output=True)" | 4535 " load_dataset.features_for_train_test_sets(df, write_output=True)" |
4552 ] | 4536 ] |
4553 }, | 4537 }, |
4554 { | 4538 { |
4555 "cell_type": "code", | 4539 "cell_type": "markdown", |
4556 "execution_count": null, | |
4557 "metadata": { | 4540 "metadata": { |
4558 "collapsed": true | 4541 "collapsed": true |
4559 }, | 4542 }, |
4560 "outputs": [], | |
4561 "source": [ | 4543 "source": [ |
4562 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES" | 4544 "## Map frames and write output for the lda transformed frames" |
4563 ] | 4545 ] |
4564 }, | 4546 }, |
4565 { | 4547 { |
4566 "cell_type": "code", | 4548 "cell_type": "code", |
4567 "execution_count": 3, | 4549 "execution_count": 7, |
4568 "metadata": { | 4550 "metadata": {}, |
4569 "collapsed": false | |
4570 }, | |
4571 "outputs": [ | 4551 "outputs": [ |
4572 { | 4552 { |
4573 "name": "stdout", | 4553 "name": "stdout", |
4574 "output_type": "stream", | 4554 "output_type": "stream", |
4575 "text": [ | 4555 "text": [ |
4576 "iteration 0\n", | 4556 "iteration 0\n", |
4577 "mapping...\n", | 4557 "mapping...\n", |
4578 "/import/c4dm-04/mariap/train_data_melodia_8_0.pickle\n", | 4558 "/import/c4dm-04/mariap/train_data_melodia_8_0.pickle\n" |
4579 "(203219, 840) (68100, 840) (67143, 840)\n", | |
4580 "mapping rhy\n", | |
4581 "training with PCA transform...\n", | |
4582 "variance explained 1.0\n", | |
4583 "140 400\n", | |
4584 "training with PCA transform...\n", | |
4585 "variance explained 0.990203912455\n", | |
4586 "training with LDA transform...\n" | |
4587 ] | 4559 ] |
4588 }, | 4560 }, |
4589 { | 4561 { |
4590 "name": "stderr", | 4562 "ename": "KeyboardInterrupt", |
4591 "output_type": "stream", | 4563 "evalue": "", |
4592 "text": [ | |
4593 "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py:526: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", | |
4594 " y = column_or_1d(y, warn=True)\n", | |
4595 "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/discriminant_analysis.py:455: UserWarning: The priors do not sum to 1. Renormalizing\n", | |
4596 " UserWarning)\n" | |
4597 ] | |
4598 }, | |
4599 { | |
4600 "name": "stdout", | |
4601 "output_type": "stream", | |
4602 "text": [ | |
4603 "variance explained 1.0\n", | |
4604 "transform test data...\n", | |
4605 "mapping mel\n", | |
4606 "training with PCA transform...\n", | |
4607 "variance explained 1.0\n", | |
4608 "214 240\n", | |
4609 "training with PCA transform...\n", | |
4610 "variance explained 0.990094273777\n", | |
4611 "training with LDA transform...\n", | |
4612 "variance explained 1.0\n", | |
4613 "transform test data...\n", | |
4614 "mapping mfc\n", | |
4615 "training with PCA transform...\n", | |
4616 "variance explained 1.0\n", | |
4617 "39 80\n", | |
4618 "training with PCA transform...\n", | |
4619 "variance explained 0.9914399357\n", | |
4620 "training with LDA transform...\n", | |
4621 "variance explained 0.941390777379\n", | |
4622 "transform test data...\n", | |
4623 "mapping chr\n", | |
4624 "training with PCA transform...\n", | |
4625 "variance explained 1.0\n", | |
4626 "70 120\n", | |
4627 "training with PCA transform...\n", | |
4628 "variance explained 0.990511935176\n", | |
4629 "training with LDA transform...\n", | |
4630 "variance explained 0.953613938607\n", | |
4631 "transform test data...\n" | |
4632 ] | |
4633 }, | |
4634 { | |
4635 "ename": "ValueError", | |
4636 "evalue": "all the input array dimensions except for the concatenation axis must match exactly", | |
4637 "output_type": "error", | 4564 "output_type": "error", |
4638 "traceback": [ | 4565 "traceback": [ |
4639 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | 4566 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
4640 "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | 4567 "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
4641 "\u001b[0;32m<ipython-input-3-971892d5bd8d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m output_file in OUTPUT_FILES]\n\u001b[1;32m 7\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mldadata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlda_map_and_average_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmin_variance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.99\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mldadata_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# classification and confusion\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | 4568 "\u001b[0;32m<ipython-input-7-f093c6f2c550>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m mapper.OUTPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n\u001b[1;32m 8\u001b[0m output_file in MAPPER_OUTPUT_FILES]\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mldadata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlda_map_and_average_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmin_variance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.99\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mldadata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
4642 "\u001b[0;31mValueError\u001b[0m: all the input array dimensions except for the concatenation axis must match exactly" | 4569 "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mlda_map_and_average_frames\u001b[0;34m(dataset, n_components, min_variance)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mlda_map_and_average_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_components\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_variance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_train_val_test_sets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
4570 "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_train_val_test_sets\u001b[0;34m()\u001b[0m\n\u001b[1;32m 69\u001b[0m '''\n\u001b[1;32m 70\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m \u001b[0mtrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0mvalset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4571 "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(pickle_file)\u001b[0m\n\u001b[1;32m 57\u001b[0m '''\n\u001b[1;32m 58\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpickle_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;31m# remove 'unknown' and 'unidentified' country\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mremove_inds\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4572 "\u001b[0;32m/homes/mp305/anaconda/lib/python2.7/pickle.pyc\u001b[0m in \u001b[0;36mload\u001b[0;34m(file)\u001b[0m\n\u001b[1;32m 1382\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1383\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1384\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mUnpickler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1385\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1386\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mloads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4573 "\u001b[0;32m/homes/mp305/anaconda/lib/python2.7/pickle.pyc\u001b[0m in \u001b[0;36mload\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 863\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 864\u001b[0;31m \u001b[0mdispatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 865\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0m_Stop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstopinst\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 866\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mstopinst\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4574 "\u001b[0;32m/homes/mp305/anaconda/lib/python2.7/pickle.pyc\u001b[0m in \u001b[0;36mload_string\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 966\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload_string\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 968\u001b[0;31m \u001b[0mrep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 969\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mq\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m\"\\\"'\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# double or single quote\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrep\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4575 "\u001b[0;31mKeyboardInterrupt\u001b[0m: " | |
4643 ] | 4576 ] |
4644 } | 4577 } |
4645 ], | 4578 ], |
4646 "source": [ | 4579 "source": [ |
4580 "MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES\n", | |
4647 "for n in range(n_iters):\n", | 4581 "for n in range(n_iters):\n", |
4648 " print \"iteration %d\" % n\n", | 4582 " print \"iteration %d\" % n\n", |
4649 " \n", | 4583 " \n", |
4650 " print \"mapping...\"\n", | 4584 " print \"mapping...\"\n", |
4651 " mapper.INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", | 4585 " mapper.INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", |
4655 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", | 4589 " _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", |
4656 " mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)" | 4590 " mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)" |
4657 ] | 4591 ] |
4658 }, | 4592 }, |
4659 { | 4593 { |
4594 "cell_type": "markdown", | |
4595 "metadata": {}, | |
4596 "source": [ | |
4597 "## Classification only - assuming mapper files are exported " | |
4598 ] | |
4599 }, | |
4600 { | |
4660 "cell_type": "code", | 4601 "cell_type": "code", |
4661 "execution_count": null, | 4602 "execution_count": 5, |
4662 "metadata": { | 4603 "metadata": {}, |
4663 "collapsed": true | 4604 "outputs": [ |
4664 }, | 4605 { |
4665 "outputs": [], | 4606 "name": "stdout", |
4607 "output_type": "stream", | |
4608 "text": [ | |
4609 "iteration 0\n" | |
4610 ] | |
4611 }, | |
4612 { | |
4613 "ename": "IOError", | |
4614 "evalue": "[Errno 2] No such file or directory: '/import/c4dm-04/mariap/nmf_data_melodia_8_0.pickle'", | |
4615 "output_type": "error", | |
4616 "traceback": [ | |
4617 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
4618 "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", | |
4619 "\u001b[0;32m<ipython-input-5-eb8ccb858c3f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOUTPUT_FILES\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCLASS_INPUT_FILES\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mINPUT_FILES\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mOUTPUT_FILES\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mldadata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassification\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCLASS_INPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mldadata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;31m# classification and confusion\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4620 "\u001b[0;32m/homes/mp305/code/pythoncode/plosone_underreview/scripts/classification.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mX_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mYaudio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
4621 "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: '/import/c4dm-04/mariap/nmf_data_melodia_8_0.pickle'" | |
4622 ] | |
4623 } | |
4624 ], | |
4666 "source": [ | 4625 "source": [ |
4667 "CLASS_INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", | |
4668 " output_file in mapper.OUTPUT_FILES]\n", | |
4669 "mapper.OUTPUT_FILES = CLASS_INPUT_FILES\n", | |
4670 "mapper.INPUT_FILES = OUTPUT_FILES\n", | |
4671 "for n in range(n_iters):\n", | 4626 "for n in range(n_iters):\n", |
4672 " print \"iteration %d\" % n\n", | 4627 " print \"iteration %d\" % n\n", |
4628 " CLASS_INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for \n", | |
4629 " output_file in mapper.OUTPUT_FILES]\n", | |
4630 " mapper.INPUT_FILES = OUTPUT_FILES\n", | |
4673 " ldadata_list, Y, Yaudio = classification.load_data_from_pickle(CLASS_INPUT_FILES[2])\n", | 4631 " ldadata_list, Y, Yaudio = classification.load_data_from_pickle(CLASS_INPUT_FILES[2])\n", |
4674 " X = np.concatenate(ldadata_list, axis=1)\n", | 4632 " X = np.concatenate(ldadata_list, axis=1)\n", |
4675 " # classification and confusion\n", | 4633 " # classification and confusion\n", |
4676 " print \"classifying...\"\n", | 4634 " print \"classifying...\"\n", |
4677 " traininds, testinds = classification.get_train_test_indices(Yaudio)\n", | 4635 " traininds, testinds = classification.get_train_test_indices(Yaudio)\n", |
4702 ] | 4660 ] |
4703 }, | 4661 }, |
4704 { | 4662 { |
4705 "cell_type": "code", | 4663 "cell_type": "code", |
4706 "execution_count": 5, | 4664 "execution_count": 5, |
4707 "metadata": { | 4665 "metadata": {}, |
4708 "collapsed": false | |
4709 }, | |
4710 "outputs": [ | 4666 "outputs": [ |
4711 { | 4667 { |
4712 "data": { | 4668 "data": { |
4713 "text/plain": [ | 4669 "text/plain": [ |
4714 "(8089, 381)" | 4670 "(8089, 381)" |
4724 ] | 4680 ] |
4725 }, | 4681 }, |
4726 { | 4682 { |
4727 "cell_type": "code", | 4683 "cell_type": "code", |
4728 "execution_count": 10, | 4684 "execution_count": 10, |
4729 "metadata": { | 4685 "metadata": {}, |
4730 "collapsed": false | |
4731 }, | |
4732 "outputs": [ | 4686 "outputs": [ |
4733 { | 4687 { |
4734 "name": "stdout", | 4688 "name": "stdout", |
4735 "output_type": "stream", | 4689 "output_type": "stream", |
4736 "text": [ | 4690 "text": [ |
4756 ] | 4710 ] |
4757 }, | 4711 }, |
4758 { | 4712 { |
4759 "cell_type": "code", | 4713 "cell_type": "code", |
4760 "execution_count": 13, | 4714 "execution_count": 13, |
4761 "metadata": { | 4715 "metadata": {}, |
4762 "collapsed": false | |
4763 }, | |
4764 "outputs": [ | 4716 "outputs": [ |
4765 { | 4717 { |
4766 "name": "stdout", | 4718 "name": "stdout", |
4767 "output_type": "stream", | 4719 "output_type": "stream", |
4768 "text": [ | 4720 "text": [ |
4865 ] | 4817 ] |
4866 }, | 4818 }, |
4867 { | 4819 { |
4868 "cell_type": "code", | 4820 "cell_type": "code", |
4869 "execution_count": 33, | 4821 "execution_count": 33, |
4870 "metadata": { | 4822 "metadata": {}, |
4871 "collapsed": false | |
4872 }, | |
4873 "outputs": [ | 4823 "outputs": [ |
4874 { | 4824 { |
4875 "name": "stdout", | 4825 "name": "stdout", |
4876 "output_type": "stream", | 4826 "output_type": "stream", |
4877 "text": [ | 4827 "text": [ |
4887 ] | 4837 ] |
4888 }, | 4838 }, |
4889 { | 4839 { |
4890 "cell_type": "code", | 4840 "cell_type": "code", |
4891 "execution_count": 34, | 4841 "execution_count": 34, |
4892 "metadata": { | 4842 "metadata": {}, |
4893 "collapsed": false | |
4894 }, | |
4895 "outputs": [ | 4843 "outputs": [ |
4896 { | 4844 { |
4897 "data": { | 4845 "data": { |
4898 "text/plain": [ | 4846 "text/plain": [ |
4899 "SpearmanrResult(correlation=1.0, pvalue=0.0)" | 4847 "SpearmanrResult(correlation=1.0, pvalue=0.0)" |