Mercurial > hg > plosone_underreview
comparison scripts/classification.py @ 47:081ff4ea7da7 branch-tests
sensitivity experiment split
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 15 Sep 2017 17:33:14 +0100 |
parents | ef829b187308 |
children | 08b9327f1935 |
comparison
equal
deleted
inserted
replaced
46:3ed4c6af5a93 | 47:081ff4ea7da7 |
---|---|
43 def classify_for_filenames(file_list=FILENAMES): | 43 def classify_for_filenames(file_list=FILENAMES): |
44 df_results = pd.DataFrame() | 44 df_results = pd.DataFrame() |
45 feat_learner = util_feature_learning.Transformer() | 45 feat_learner = util_feature_learning.Transformer() |
46 for filename in file_list: | 46 for filename in file_list: |
47 X, Y, Yaudio = load_data_from_pickle(filename) | 47 X, Y, Yaudio = load_data_from_pickle(filename) |
48 traininds, testinds = get_train_test_indices() | 48 traininds, testinds = get_train_test_indices(Yaudio) |
49 X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds) | 49 X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds) |
50 df_result = feat_learner.classify(X_train, Y_train, X_test, Y_test) | 50 df_result = feat_learner.classify(X_train, Y_train, X_test, Y_test) |
51 df_results = pd.concat([df_results, df_result], axis=0, ignore_index=True) | 51 df_results = pd.concat([df_results, df_result], axis=0, ignore_index=True) |
52 return df_results | 52 return df_results |
53 | |
54 | |
55 def classify_each_feature(X_train, Y_train, X_test, Y_test): | |
56 n_dim = X_train.shape[1] | |
57 feat_labels, feat_inds = map_and_average.get_feat_inds(n_dim=n_dim) | |
58 #df_results = pd.DataFrame() | |
59 # first the classification with all features together | |
60 df_results = feat_learner.classify(X_train, Y_train, X_test, Y_test) | |
61 # then append for each feature separately | |
62 for i in range(len(feat_inds)): | |
63 df_result = feat_learner.classify(X_train[:, feat_inds[i]], Y_train, | |
64 X_test[:, feat_inds[i]], Y_test) | |
65 df_results = pd.concat([df_results, df_result], axis=1, ignore_index=True) | |
66 return df_results | |
53 | 67 |
54 | 68 |
55 def plot_CF(CF, labels=None, figurename=None): | 69 def plot_CF(CF, labels=None, figurename=None): |
56 labels[labels=='United States of America'] = 'United States Amer.' | 70 labels[labels=='United States of America'] = 'United States Amer.' |
57 plt.imshow(CF, cmap="Greys") | 71 plt.imshow(CF, cmap="Greys") |